Show simple item record

dc.contributor.author
Gorlo, Nicolas
dc.contributor.contactPerson
Gorlo, Nicolas
dc.contributor.dataCollector
Gorlo, Nicolas
dc.contributor.projectMember
Gorlo, Nicolas
dc.contributor.projectMember
Milano, Francesco
dc.contributor.projectMember
Blomqvist, Kenneth
dc.contributor.researchGroup
Siegwart, Roland Y.
dc.date.accessioned
2023-11-21T06:24:21Z
dc.date.available
2023-11-17T00:58:09Z
dc.date.available
2023-11-18T18:25:15Z
dc.date.available
2023-11-21T06:24:21Z
dc.date.created
2023
en_US
dc.date.issued
2023-11-21
dc.identifier.uri
http://hdl.handle.net/20.500.11850/642459
dc.identifier.doi
10.3929/ethz-b-000642459
dc.description.abstract
Most object-level mapping systems in use today make use of an upstream learned object instance segmentation model. If we want to teach them about a new object or segmentation class, we need to build a large dataset and retrain the system. To build spatial AI systems that can quickly be taught about new objects, we need to effectively solve the problem of single-shot object detection, instance segmentation and re-identification. So far there is neither a method fulfilling all of these requirements in unison nor a benchmark that could be used to test such a method. Addressing this, we propose ISAR, a benchmark and baseline method for single- and few-shot object Instance Segmentation And Re-identification, in an effort to accelerate the development of algorithms that can robustly detect, segment, and re-identify objects from a single or a few sparse training examples. We provide a semi-synthetic dataset of video sequences with ground-truth semantic annotations, a standardized evaluation pipeline, and a baseline method. Our benchmark aligns with the emerging research trend of unifying Multi-Object Tracking, Video Object Segmentation, and Re-identification.
en_US
dc.format
application/zip
en_US
dc.format
image/jpeg
en_US
dc.format
application/json
en_US
dc.format
image/png
en_US
dc.language.iso
en
en_US
dc.publisher
ETH Zurich
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.subject
Video instance segmentation
en_US
dc.subject
3D scene understanding
en_US
dc.subject
Video Object Segmentation
en_US
dc.title
ISAR: A Benchmark for Single- and Few-Shot Object Instance Segmentation and Re-Identification
en_US
dc.type
Dataset
dc.rights.license
In Copyright - Non-Commercial Use Permitted
ethz.size
17.06 GB
en_US
ethz.date.collected
2023
en_US
ethz.publication.place
Zurich
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02620 - Inst. f. Robotik u. Intelligente Systeme / Inst. Robotics and Intelligent Systems::03737 - Siegwart, Roland Y. / Siegwart, Roland Y.
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02620 - Inst. f. Robotik u. Intelligente Systeme / Inst. Robotics and Intelligent Systems::03737 - Siegwart, Roland Y. / Siegwart, Roland Y.
en_US
ethz.date.retentionend
10 years
en_US
ethz.date.retentionendDate
2033-11-21T06:24:21Z
ethz.relation.isSupplementTo
10.48550/arXiv.2311.02734
ethz.date.deposited
2023-11-17T00:58:09Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2023-11-21T06:30:16Z
ethz.rosetta.lastUpdated
2024-02-03T06:48:04Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=ISAR:%20A%20Benchmark%20for%20Single-%20and%20Few-Shot%20Object%20Instance%20Segmentation%20and%20Re-Identification&rft.date=2023-11-21&rft.au=Gorlo,%20Nicolas&rft.genre=unknown&rft.btitle=ISAR:%20A%20Benchmark%20for%20Single-%20and%20Few-Shot%20Object%20Instance%20Segmentation%20and%20Re-Identification
 Search print copy at ETH Library

Files in this item

Thumbnail
Thumbnail

Publication type

Show simple item record