Synthetic population generation by combining a hierarchical, simulation-based approach with reweighting by generalized raking
dc.contributor.author
Casati, Daniele
dc.contributor.author
Müller, Kirill
dc.contributor.author
Fourie, Pieter J.
dc.contributor.author
Erath, Alexander
dc.contributor.author
Axhausen, Kay W.
dc.date.accessioned
2018-05-22T06:02:37Z
dc.date.available
2017-06-11T11:05:26Z
dc.date.available
2018-05-18T16:02:33Z
dc.date.available
2018-05-22T06:02:37Z
dc.date.issued
2015
dc.identifier.issn
0361-1981
dc.identifier.issn
2169-4052
dc.identifier.other
10.3141/2493-12
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/86853
dc.identifier.doi
10.3929/ethz-b-000086853
dc.description.abstract
A recent approach for generating populations of synthetic individuals through simulation is extended to produce households of grouped individuals. The contingency tables of the generated populations match external controls on the individual and household levels while exhibiting far greater variety in composition than existing approaches can offer. The method involves a two-step approach. The first consists of a procedure based on Gibbs sampling, which has only recently been applied to population generation in transportation modeling and is generically called Markov chain Monte Carlo (MCMC). For this work, the model was generalized, and an extension was developed, hierarchical MCMC, which was able to generate a hierarchical structure. The second step, a postprocessing step, uses generalized raking (GR), which reweights the output from hierarchical MCMC to perfectly satisfy known marginal control totals on the individual and household levels. The application input data—a demographic sample and some known marginals from Singapore—added further complexities to the problem, which had not yet been explored in the current literature. Despite data challenges, consecutively applying the methods above produced realistic synthetic populations. Results confirm their goodness of fit and their generated hierarchical structures.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Transportation Research Board
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.title
Synthetic population generation by combining a hierarchical, simulation-based approach with reweighting by generalized raking
en_US
dc.type
Journal Article
dc.rights.license
In Copyright - Non-Commercial Use Permitted
ethz.journal.title
Transportation Research Record
ethz.journal.volume
2493
en_US
ethz.journal.abbreviated
Transp. Res. Rec.
ethz.pages.start
107
en_US
ethz.pages.end
116
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.nebis
000024408
ethz.publication.place
Washington, DC
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00003 - Schulleitung und Dienste::00022 - Bereich VP Forschung / Domain VP Research::08058 - Singapore-ETH Centre (SEC) / Singapore-ETH Centre (SEC)
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.::02610 - Inst. f. Verkehrspl. u. Transportsyst. / Inst. Transport Planning and Systems::03521 - Axhausen, Kay W. (emeritus) / Axhausen, Kay W. (emeritus)
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02100 - Dep. Architektur / Dep. of Architecture::02655 - Netzwerk Stadt und Landschaft D-ARCH::02226 - NSL - Netzwerk Stadt und Landschaft / NSL - Network City and Landscape
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02100 - Dep. Architektur / Dep. of Architecture::02655 - Netzwerk Stadt u. Landschaft ARCH u BAUG / Network City and Landscape ARCH and BAUG
*
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00003 - Schulleitung und Dienste::00022 - Bereich VP Forschung / Domain VP Research::08058 - Singapore-ETH Centre (SEC) / Singapore-ETH Centre (SEC)::08060 - FCL / FCL
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.::02610 - Inst. f. Verkehrspl. u. Transportsyst. / Inst. Transport Planning and Systems::03521 - Axhausen, Kay W. (emeritus) / Axhausen, Kay W. (emeritus)
ethz.tag
FCL1
ethz.date.deposited
2017-06-11T11:05:36Z
ethz.source
ECIT
ethz.identifier.importid
imp5936521c4769b10542
ethz.ecitpid
pub:136644
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2017-08-01T17:21:00Z
ethz.rosetta.lastUpdated
2024-02-02T04:50:33Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Synthetic%20population%20generation%20by%20combining%20a%20hierarchical,%20simulation-based%20approach%20with%20reweighting%20by%20generalized%20raking&rft.jtitle=Transportation%20Research%20Record&rft.date=2015&rft.volume=2493&rft.spage=107&rft.epage=116&rft.issn=0361-1981&2169-4052&rft.au=Casati,%20Daniele&M%C3%BCller,%20Kirill&Fourie,%20Pieter%20J.&Erath,%20Alexander&Axhausen,%20Kay%20W.&rft.genre=article&rft_id=info:doi/10.3141/2493-12&
Files in this item
Publication type
-
Journal Article [131345]