Sensitivity analysis for stochastic chemical reaction networks with multiple time-scales
dc.contributor.author
Gupta, Ankit
dc.contributor.author
Khammash, Mustafa Hani
dc.date.accessioned
2021-08-02T14:45:02Z
dc.date.available
2017-06-11T09:27:35Z
dc.date.available
2021-08-02T14:44:05Z
dc.date.available
2021-08-02T14:45:02Z
dc.date.issued
2014
dc.identifier.issn
1083-6489
dc.identifier.other
10.1214/EJP.v19-3246
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/85102
dc.identifier.doi
10.3929/ethz-b-000085102
dc.description.abstract
Stochastic models for chemical reaction networks have become very popular in recent years. For such models, the estimation of parameter sensitivities is an important and challenging problem. Sensitivity values help in analyzing the network, understanding its robustness properties and also in identifying the key reactions for a given outcome. Most of the methods that exist in the literature for the estimation of parameter sensitivities, rely on Monte Carlo simulations using Gillespie's stochastic simulation algorithm or its variants. It is well-known that such simulation methods can be prohibitively expensive when the network contains reactions firing at different time-scales, which is a feature of many important biochemical networks. For such networks, it is often possible to exploit the time-scale separation and approximately capture the original dynamics by simulating a "reduced" model, which is obtained by eliminating the fast reactions in a certain way. The aim of this paper is to tie these model reduction techniques with sensitivity analysis. We prove that under some conditions, the sensitivity values for the reduced model can be used to approximately recover the sensitivity values for the original model. Through an example we illustrate how our result can help in sharply reducing the computational costs for the estimation of parameter sensitivities for reaction networks with multiple time-scales. To prove our result, we use coupling arguments based on the random time change representation of Kurtz. We also exploit certain connections between the distributions of the occupation times of Markov chains and multi-dimensional wave equations.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Institute of Mathematical Statistics
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/3.0/
dc.subject
Parameter sensitivity
en_US
dc.subject
Chemical reaction network
en_US
dc.subject
time-scale separation
en_US
dc.subject
Multiscale network
en_US
dc.subject
Educed models
en_US
dc.subject
Random time change
en_US
dc.subject
Coupling
en_US
dc.title
Sensitivity analysis for stochastic chemical reaction networks with multiple time-scales
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 3.0 Unported
dc.date.published
2016-06-04
ethz.journal.title
Electronic Journal of Probability
ethz.journal.volume
19
en_US
ethz.journal.abbreviated
Electron. J. Probab.
ethz.pages.start
59
en_US
ethz.size
53 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.nebis
005410469
ethz.publication.place
Bethesda, MD
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02060 - Dep. Biosysteme / Dep. of Biosystems Science and Eng.::03921 - Khammash, Mustafa / Khammash, Mustafa
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02060 - Dep. Biosysteme / Dep. of Biosystems Science and Eng.::03921 - Khammash, Mustafa / Khammash, Mustafa
ethz.date.deposited
2017-06-11T09:28:05Z
ethz.source
ECIT
ethz.identifier.importid
imp593651fa3126471947
ethz.ecitpid
pub:134086
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2017-07-12T23:36:20Z
ethz.rosetta.lastUpdated
2024-02-02T14:27:37Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Sensitivity%20analysis%20for%20stochastic%20chemical%20reaction%20networks%20with%20multiple%20time-scales&rft.jtitle=Electronic%20Journal%20of%20Probability&rft.date=2014&rft.volume=19&rft.spage=59&rft.issn=1083-6489&rft.au=Gupta,%20Ankit&Khammash,%20Mustafa%20Hani&rft.genre=article&rft_id=info:doi/10.1214/EJP.v19-3246&
Files in this item
Publication type
-
Journal Article [131589]