Show simple item record

dc.contributor.author
Smit, Thijs
dc.contributor.author
Aage, Niels
dc.contributor.author
Haschtmann, Daniel
dc.contributor.author
Ferguson, Stephen J.
dc.contributor.author
Helgason, Benedikt
dc.date.accessioned
2024-10-09T09:55:19Z
dc.date.available
2024-10-09T04:55:53Z
dc.date.available
2024-10-09T09:55:19Z
dc.date.issued
2024-09-10
dc.identifier.issn
2296-4185
dc.identifier.other
10.3389/fbioe.2024.1347961
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/698674
dc.identifier.doi
10.3929/ethz-b-000698674
dc.description.abstract
A full-scale topology optimisation formulation has been developed to automate the design of cages used in instrumented transforaminal lumbar interbody fusion. The method incorporates the mechanical response of the adjacent bone structures in the optimisation process, yielding patient-specific spinal fusion cages that both anatomically and mechanically conform to the patient, effectively mitigating subsidence risk compared to generic, off-the-shelf cages and patient-specific devices. In this study, in silico medical device testing on a cohort of seven patients was performed to investigate the effectiveness of the anatomically and mechanically conforming devices using titanium and PEEK implant materials. A median reduction in the subsidence risk by 89% for titanium and 94% for PEEK implant materials was demonstrated compared to an off-the-shelf implant. A median reduction of 75% was achieved for a PEEK implant material compared to an anatomically conforming implant. A credibility assessment of the computational model used to predict the subsidence risk was provided according to the ASME V&V40-2018 standard.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Frontiers Media
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
in silico
en_US
dc.subject
ASME V&V40
en_US
dc.subject
model credibility
en_US
dc.subject
medical device testing
en_US
dc.subject
topology optimisation
en_US
dc.subject
patient-specific
en_US
dc.subject
finite element analysis
en_US
dc.subject
lumbar spinal fusion implant
en_US
dc.title
In silico medical device testing of anatomically and mechanically conforming patient-specific spinal fusion cages designed by full-scale topology optimisation
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
ethz.journal.title
Frontiers in Bioengineering and Biotechnology
ethz.journal.volume
12
en_US
ethz.journal.abbreviated
Front. Bioeng. Biotechnol.
ethz.pages.start
1347961
en_US
ethz.size
13 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.grant
Training innovative future leaders in research and development of materials and implants for the spine
en_US
ethz.identifier.wos
ethz.publication.status
published
en_US
ethz.grant.agreementno
812765
ethz.grant.fundername
EC
ethz.grant.funderDoi
10.13039/501100000780
ethz.grant.program
H2020
ethz.date.deposited
2024-10-09T04:55:56Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2024-10-09T09:55:20Z
ethz.rosetta.lastUpdated
2024-10-09T09:55:20Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=In%20silico%20medical%20device%20testing%20of%20anatomically%20and%20mechanically%20conforming%20patient-specific%20spinal%20fusion%20cages%20designed%20by%20full-scale%&rft.jtitle=Frontiers%20in%20Bioengineering%20and%20Biotechnology&rft.date=2024-09-10&rft.volume=12&rft.spage=1347961&rft.issn=2296-4185&rft.au=Smit,%20Thijs&Aage,%20Niels&Haschtmann,%20Daniel&Ferguson,%20Stephen%20J.&Helgason,%20Benedikt&rft.genre=article&rft_id=info:doi/10.3389/fbioe.2024.1347961&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record