Biodegradable and Flexible Wood-Gelatin Composites for Soft Actuating Systems
dc.contributor.author
Koch, Sophie
dc.contributor.author
Dreimol, Christopher
dc.contributor.author
Goldhahn, Christian
dc.contributor.author
Maillard, Aline
dc.contributor.author
Stadler, Andrina
dc.contributor.author
Künniger, Tina
dc.contributor.author
Grönquist, Philippe
dc.contributor.author
Ritter, Maximilian
dc.contributor.author
Keplinger, Tobias
dc.contributor.author
Burgert, Ingo
dc.date.accessioned
2024-06-11T09:01:35Z
dc.date.available
2024-06-08T07:45:42Z
dc.date.available
2024-06-11T09:01:35Z
dc.date.issued
2024-06-10
dc.identifier.issn
2168-0485
dc.identifier.other
10.1021/acssuschemeng.4c00306
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/677259
dc.identifier.doi
10.3929/ethz-b-000677259
dc.description.abstract
Compliant materials are indispensable for many emerging soft robotics applications. Hence, concerns regarding sustainability and end-of-life options for these materials are growing, given that they are predominantly petroleum-based and non-recyclable. Despite efforts to explore alternative bio-derived soft materials like gelatin, they frequently fall short in delivering the mechanical performance required for soft actuating systems. To address this issue, we reinforced a compliant and transparent gelatin-glycerol matrix with structure-retained delignified wood, resulting in a flexible and entirely biobased composite (DW-flex). This DW-flex composite exhibits highly anisotropic mechanical behavior, possessing higher strength and stiffness in the fiber direction and high deformability perpendicular to it. Implementing a distinct anisotropy in otherwise isotropic soft materials unlocks new possibilities for more complex movement patterns. To demonstrate the capability and potential of DW-flex, we built and modeled a fin ray-inspired gripper finger, which deforms based on a twist-bending-coupled motion that is tailorable by adjusting the fiber direction. Moreover, we designed a demonstrator for a proof-of-concept suitable for gripping a soft object with a complex shape, i.e., a strawberry. We show that this composite is entirely biodegradable in soil, enabling more sustainable approaches for soft actuators in robotics applications.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
American Chemical Society
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
biobased
en_US
dc.subject
biodegradable
en_US
dc.subject
delignified wood
en_US
dc.subject
soft composites
en_US
dc.subject
soft actuators
en_US
dc.subject
soft robotics
en_US
dc.subject
twist-bending coupling
en_US
dc.subject
Animal derived food
en_US
dc.subject
Composites
en_US
dc.subject
Fibers
en_US
dc.subject
Humidity
en_US
dc.subject
Wood
en_US
dc.title
Biodegradable and Flexible Wood-Gelatin Composites for Soft Actuating Systems
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2024-05-30
ethz.journal.title
ACS Sustainable Chemistry & Engineering
ethz.journal.volume
12
en_US
ethz.journal.issue
23
en_US
ethz.journal.abbreviated
ACS Sustainable Chem. Eng. Note
ethz.pages.start
8662
en_US
ethz.pages.end
8670
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.status
published
en_US
ethz.date.deposited
2024-06-08T07:45:52Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2024-06-11T09:01:36Z
ethz.rosetta.lastUpdated
2024-06-11T09:01:36Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Biodegradable%20and%20Flexible%20Wood-Gelatin%20Composites%20for%20Soft%20Actuating%20Systems&rft.jtitle=ACS%20Sustainable%20Chemistry%20&%20Engineering&rft.date=2024-06-10&rft.volume=12&rft.issue=23&rft.spage=8662&rft.epage=8670&rft.issn=2168-0485&rft.au=Koch,%20Sophie&Dreimol,%20Christopher&Goldhahn,%20Christian&Maillard,%20Aline&Stadler,%20Andrina&rft.genre=article&rft_id=info:doi/10.1021/acssuschemeng.4c00306&
Files in this item
Publication type
-
Journal Article [131587]