Show simple item record

dc.contributor.author
Ruggeri, Nicolò
dc.contributor.author
Lonardi, Alessandro
dc.contributor.author
De Bacco, Caterina
dc.date.accessioned
2024-04-29T10:27:54Z
dc.date.available
2024-04-28T18:09:05Z
dc.date.available
2024-04-29T10:27:54Z
dc.date.issued
2024-04
dc.identifier.issn
1742-5468
dc.identifier.other
10.1088/1742-5468/ad343b
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/670511
dc.identifier.doi
10.3929/ethz-b-000670511
dc.description.abstract
Hypergraphs are widely adopted tools to examine systems with higher-order interactions. Despite recent advancements in methods for community detection in these systems, we still lack a theoretical analysis of their detectability limits. Here, we derive closed-form bounds for community detection in hypergraphs. Using a message-passing formulation, we demonstrate that detectability depends on the hypergraphs' structural properties, such as the distribution of hyperedge sizes or their assortativity. Our formulation enables a characterization of the entropy of a hypergraph in relation to that of its clique expansion, showing that community detection is enhanced when hyperedges highly overlap on pairs of nodes. We develop an efficient message-passing algorithm to learn communities and model parameters on large systems. Additionally, we devise an exact sampling routine to generate synthetic data from our probabilistic model. Using these methods, we numerically investigate the boundaries of community detection in synthetic datasets, and extract communities from real systems. Our results extend our understanding of the limits of community detection in hypergraphs and introduce flexible mathematical tools to study systems with higher-order interactions.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
IOP Publishing
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
inference of graphical models
en_US
dc.subject
message-passing algorithms
en_US
dc.subject
statistical inference
en_US
dc.title
Message-passing on hypergraphs: detectability, phase transitions and higher-order information
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2024-04-23
ethz.journal.title
Journal of Statistical Mechanics: Theory and Experiment
ethz.journal.volume
2024
en_US
ethz.journal.issue
4
en_US
ethz.journal.abbreviated
J. Stat. Mech
ethz.pages.start
043403
en_US
ethz.size
50 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.status
published
en_US
ethz.date.deposited
2024-04-28T18:09:10Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2024-04-29T10:27:55Z
ethz.rosetta.lastUpdated
2024-04-29T10:27:55Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Message-passing%20on%20hypergraphs:%20detectability,%20phase%20transitions%20and%20higher-order%20information&rft.jtitle=Journal%20of%20Statistical%20Mechanics:%20Theory%20and%20Experiment&rft.date=2024-04&rft.volume=2024&rft.issue=4&rft.spage=043403&rft.issn=1742-5468&rft.au=Ruggeri,%20Nicol%C3%B2&Lonardi,%20Alessandro&De%20Bacco,%20Caterina&rft.genre=article&rft_id=info:doi/10.1088/1742-5468/ad343b&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record