Collective relational inference for learning heterogeneous interactions
dc.contributor.author
Han, Zhichao
dc.contributor.author
Fink, Olga
dc.contributor.author
Kammer, David S.
dc.date.accessioned
2024-05-03T08:50:39Z
dc.date.available
2024-04-21T06:32:11Z
dc.date.available
2024-04-24T11:41:47Z
dc.date.available
2024-05-03T08:50:39Z
dc.date.issued
2024-04-12
dc.identifier.issn
2041-1723
dc.identifier.other
10.1038/s41467-024-47098-7
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/669647
dc.identifier.doi
10.3929/ethz-b-000669647
dc.description.abstract
Interacting systems are ubiquitous in nature and engineering, ranging from particle dynamics in physics to functionally connected brain regions. Revealing interaction laws is of fundamental importance but also particularly challenging due to underlying configurational complexities. These challenges become exacerbated for heterogeneous systems that are prevalent in reality, where multiple interaction types coexist simultaneously and relational inference is required. Here, we propose a probabilistic method for relational inference, which possesses two distinctive characteristics compared to existing methods. First, it infers the interaction types of different edges collectively by explicitly encoding the correlation among incoming interactions with a joint distribution, and second, it allows handling systems with variable topological structure over time. We evaluate the proposed methodology across several benchmark datasets and demonstrate that it outperforms existing methods in accurately inferring interaction types. The developed methodology constitutes a key element for understanding interacting systems and may find application in graph structure learning.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Nature
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.title
Collective relational inference for learning heterogeneous interactions
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
ethz.journal.title
Nature Communications
ethz.journal.volume
15
en_US
ethz.journal.issue
1
en_US
ethz.journal.abbreviated
Nat Commun
ethz.pages.start
3191
en_US
ethz.size
13 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.grant
Data-Driven Intelligent Predictive Maintenance of Industrial Assets
en_US
ethz.grant
Physics-induced neural networks for micro-mechanical multi-scale property discovery and prediction
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.::02606 - Institut für Baustoffe (IfB) / Institute for Building Materials::09650 - Kammer, David / Kammer, David
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.::02606 - Institut für Baustoffe (IfB) / Institute for Building Materials::09650 - Kammer, David / Kammer, David
ethz.tag
rt-machine-learning
en_US
ethz.grant.agreementno
176878
ethz.grant.agreementno
ETH-12 21-1
ethz.grant.fundername
SNF
ethz.grant.fundername
ETHZ
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.funderDoi
10.13039/501100003006
ethz.grant.program
SNF-Förderungsprofessuren Stufe 2
ethz.grant.program
ETH Grants
ethz.date.deposited
2024-04-21T06:32:11Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2024-04-24T11:41:49Z
ethz.rosetta.lastUpdated
2024-04-24T11:41:49Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Collective%20relational%20inference%20for%20learning%20heterogeneous%20interactions&rft.jtitle=Nature%20Communications&rft.date=2024-04-12&rft.volume=15&rft.issue=1&rft.spage=3191&rft.issn=2041-1723&rft.au=Han,%20Zhichao&Fink,%20Olga&Kammer,%20David%20S.&rft.genre=article&rft_id=info:doi/10.1038/s41467-024-47098-7&
Files in this item
Publication type
-
Journal Article [131554]