A Sim-to-Real Deep Learning-Based Framework for Autonomous Nano-Drone Racing
dc.contributor.author
Lamberti, Lorenzo
dc.contributor.author
Cereda, Elia
dc.contributor.author
Abbate, Gabriele
dc.contributor.author
Bellone, Lorenzo
dc.contributor.author
Morinigo, Victor Javier Kartsch
dc.contributor.author
Barciś, Michał
dc.contributor.author
Barciś, Agata
dc.contributor.author
Giusti, Alessandro
dc.contributor.author
Conti, Francesco
dc.contributor.author
Palossi, Daniele
dc.date.accessioned
2024-10-01T09:33:50Z
dc.date.available
2024-02-02T11:37:03Z
dc.date.available
2024-02-02T12:26:21Z
dc.date.available
2024-10-01T09:33:50Z
dc.date.issued
2024-02
dc.identifier.issn
2377-3766
dc.identifier.other
10.1109/LRA.2024.3349814
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/657288
dc.description.abstract
Autonomous drone racing competitions are a proxy to improve unmanned aerial vehicles' perception, planning, and control skills. The recent emergence of autonomous nano-sized drone racing imposes new challenges, as their $\sim$$\text{10} \,\text{c}\text{m}$ form factor heavily restricts the resources available onboard, including memory, computation, and sensors. This letter describes the methodology and technical implementation of the system winning the first autonomous nano-drone racing international competition: the 'IMAV 2022 Nanocopter AI Challenge.' We developed a fully onboard deep learning approach for visual navigation trained only on simulation images to achieve this goal. Our approach includes a convolutional neural network for obstacle avoidance, a sim-to-real dataset collection procedure, and a navigation policy that we selected, characterized, and adapted through simulation and actual in-field experiments. Our system ranked $1\text{st}$ among six competing teams at the competition. In our best attempt, we scored $\text{115} \,\text{m}$ of traveled distance in the allotted 5-minute flight, never crashing while dodging static and dynamic obstacles. Sharing our knowledge with the research community, we aim to provide a solid groundwork to foster future development in this field.
en_US
dc.language.iso
en
en_US
dc.publisher
IEEE
en_US
dc.subject
Aerial systems: Perception and autonomy
en_US
dc.subject
embedded systems for robotic and automation
en_US
dc.subject
micro/nano robots
en_US
dc.title
A Sim-to-Real Deep Learning-Based Framework for Autonomous Nano-Drone Racing
en_US
dc.type
Journal Article
dc.date.published
2024-01-04
ethz.journal.title
IEEE Robotics and Automation Letters
ethz.journal.volume
9
en_US
ethz.journal.issue
2
en_US
ethz.pages.start
1899
en_US
ethz.pages.end
1906
en_US
ethz.notes
A correction to this article has been published.
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.status
published
en_US
ethz.relation.isReferencedBy
10.1109/LRA.2024.3442628
ethz.relation.isReferencedBy
handle/20.500.11850/694326
ethz.date.deposited
2024-02-02T11:37:03Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2024-02-02T12:26:22Z
ethz.rosetta.lastUpdated
2024-02-02T12:26:22Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=A%20Sim-to-Real%20Deep%20Learning-Based%20Framework%20for%20Autonomous%20Nano-Drone%20Racing&rft.jtitle=IEEE%20Robotics%20and%20Automation%20Letters&rft.date=2024-02&rft.volume=9&rft.issue=2&rft.spage=1899&rft.epage=1906&rft.issn=2377-3766&rft.au=Lamberti,%20Lorenzo&Cereda,%20Elia&Abbate,%20Gabriele&Bellone,%20Lorenzo&Morinigo,%20Victor%20Javier%20Kartsch&rft.genre=article&rft_id=info:doi/10.1109/LRA.2024.3349814&
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Journal Article [131554]