Printable Polar Silicone Elastomers for Healable Supercapacitive Strain Sensors
dc.contributor.author
von Szczepanski, Johannes
dc.contributor.author
Roels, Ellen
dc.contributor.author
Siqueira, Gilberto
dc.contributor.author
Danner, Patrick M.
dc.contributor.author
Wolf, Jana
dc.contributor.author
Legrand, Julie
dc.contributor.author
Brancart, Joost
dc.contributor.author
Terryn, Seppe
dc.contributor.author
van Assche, Guy
dc.contributor.author
Vanderborght, Bram
dc.contributor.author
Opris, Dorina M.
dc.date.accessioned
2024-02-26T12:52:26Z
dc.date.available
2023-11-28T06:11:41Z
dc.date.available
2023-11-28T13:02:32Z
dc.date.available
2024-02-26T12:52:26Z
dc.date.issued
2023-12-21
dc.identifier.issn
2365-709X
dc.identifier.issn
2365-709X
dc.identifier.other
10.1002/admt.202301310
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/644114
dc.identifier.doi
10.3929/ethz-b-000644114
dc.description.abstract
Soft strain sensors with high sensitivity and the ability to recover from damages are required in the emerging field of self-healing soft robotics. Herein, printable supercapacitive strain sensors that can heal upon moderate heating (75 °C for 10 min) and exhibit a 30 times higher sensitivity than PDMS-based sensors are developed. For the sensor's core layer and electrode, a nitrile-functional polysiloxane that contains an active ionic initiator and can heal by siloxane equilibration at elevated temperatures is used. Supercapacitive strain sensors prepared from the elastomer are highly sensitive at low strains of 0–30%, enabled by the electric double-layer formation of the ionic initiator. After healing, the sensors exhibit nearly unaltered performance in tensile testing. Due to the thermoreversible nature of the elastomer network, patterned core layers with different microstructures can be printed by direct ink writing. The capacitive sensors based on these microstructured films reach a higher sensitivity and linearity than those based on unstructured films. Finally, the sensor is integrated into a soft robotic finger and the sensor's ability to determine the bending angle is validated by motion capture. This technology can provide new opportunities to equip soft robotic devices with custom-printed, healable strain sensors.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Wiley
en_US
dc.rights.uri
http://creativecommons.org/licenses/by-nc/4.0/
dc.subject
3D-printing
en_US
dc.subject
high-permittivity elastomers
en_US
dc.subject
polar polysiloxanes
en_US
dc.subject
self-healing
en_US
dc.subject
soft robotics
en_US
dc.subject
supercapacitive strain sensors
en_US
dc.title
Printable Polar Silicone Elastomers for Healable Supercapacitive Strain Sensors
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution-NonCommercial 4.0 International
dc.date.published
2023-11-10
ethz.journal.title
Advanced Materials Technologies
ethz.journal.volume
8
en_US
ethz.journal.issue
24
en_US
ethz.pages.start
2301310
en_US
ethz.size
10 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.status
published
en_US
ethz.relation.isCitedBy
10.3929/ethz-b-000696879
ethz.date.deposited
2023-11-28T06:11:43Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2024-02-26T12:52:27Z
ethz.rosetta.lastUpdated
2024-02-26T12:52:27Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Printable%20Polar%20Silicone%20Elastomers%20for%20Healable%20Supercapacitive%20Strain%20Sensors&rft.jtitle=Advanced%20Materials%20Technologies&rft.date=2023-12-21&rft.volume=8&rft.issue=24&rft.spage=2301310&rft.issn=2365-709X&2365-709X&rft.au=von%20Szczepanski,%20Johannes&Roels,%20Ellen&Siqueira,%20Gilberto&Danner,%20Patrick%20M.&Wolf,%20Jana&rft.genre=article&rft_id=info:doi/10.1002/admt.202301310&
Files in this item
Publication type
-
Journal Article [131588]