Zur Kurzanzeige

dc.contributor.author
Galli, Valeria
dc.contributor.author
Menon, Carlo
dc.contributor.author
Ahmadizadeh, Chakaveh
dc.contributor.contactPerson
Ahmadizadeh, Chakaveh
dc.contributor.contactPerson
Galli, Valeria
dc.contributor.dataCollector
Ahmadizadeh, Chakaveh
dc.contributor.dataCollector
Galli, Valeria
dc.contributor.researchGroup
Menon, Carlo
dc.date.accessioned
2024-09-09T14:45:34Z
dc.date.available
2023-10-27T10:39:34Z
dc.date.available
2024-09-05T07:28:44Z
dc.date.available
2024-09-09T11:58:08Z
dc.date.available
2024-09-09T14:45:34Z
dc.date.created
2023-06
en_US
dc.date.issued
2024-09-09
dc.identifier.uri
http://hdl.handle.net/20.500.11850/638914
dc.identifier.doi
10.3929/ethz-b-000638914
dc.description.abstract
This data was collected from a set of textile capacitive sensors positioned on a knee sleeve above the knee and in contact with the skin (the body is used as one of two electrodes of each capacitive sensors). The data was used to predict joint angles (in this case, the knee sagittal angle) from the sensors response. Ground truth values for the angle are derived from optical motion capture. A single healthy participant performed two different movements each while wearing the sensorized knee sleeve and optical markers for simultaneous optical motion tracking.
en_US
dc.format
application/zip
en_US
dc.format
application/x-matlab-data
en_US
dc.format
text/csv
en_US
dc.language.iso
en
en_US
dc.publisher
ETH Zurich
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.subject
wearable sensors, human motion tracking, textile sensors
en_US
dc.title
Textile-based Body Capacitive Sensing for Movement Monitoring
en_US
dc.type
Data Collection
dc.rights.license
In Copyright - Non-Commercial Use Permitted
ethz.size
8.00 MB
en_US
ethz.date.collected
2023-06
en_US
ethz.code.ddc
DDC - DDC::6 - Technology, medicine and applied sciences::610 - Medical sciences, medicine
en_US
ethz.notes
data structured as follows: - LCR: raw data from LCR meter with impedance magnitude and phase, capacitance and resistance of the sensors (.tsv text files) - OMC: sagittal, frontal and lateral knee angle (.mat files) from processing of raw OMC data
en_US
ethz.geolocation.placename
Balgrist Campus, Zurich
ethz.publication.place
Zurich
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02070 - Dep. Gesundheitswiss. und Technologie / Dep. of Health Sciences and Technology::09715 - Menon, Carlo / Menon, Carlo
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02070 - Dep. Gesundheitswiss. und Technologie / Dep. of Health Sciences and Technology::09715 - Menon, Carlo / Menon, Carlo
en_US
ethz.date.retentionend
indefinite
en_US
ethz.date.retentionendDate
n/a
ethz.relation.isSupplementTo
10.3929/ethz-b-000645990
ethz.date.deposited
2023-10-27T10:39:34Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.description.methods
This data was collected from four textile based capacitive sensors placed on a tight knee sleeve and in contact with the body to detect movements. The sensors consist of conductive fabric attached to a knee sleeve with heat press. The sensors are made with two concentric squared electrodes. The four sensors are named anterior, posterior, lateral and medial based on the position with respect to the knee. Anterior-posterior and Medial-lateral denote configurations whereby the two concentric electrodes of the sensor are shorted (i.e. connected to form a single electrode): e.g. for anterior-posterior, the anterior sensor's electrodes are shorted together, the posterior sensor's electrodes are shorted togehter, and capacitance is measured between anterior and posterior sensors. Two movements were perfomed for 10 times each: - flexion/extension of the knee from a seated position spanning an angle of about 90 degrees - squat using a chair as reference for repeatability Capacitance was measured through an LCR meter during the tests. Simultaneously, the participant wearing the knee sleeve was equipped with optical markers and optical motion capture (OMC) is performed in a laboratory equipped with 27 cameras (VICON system). The optical motion capture gave the ground truth for the knee angles value: sagittal, frontal and lateral knee angles were obtained from data processing of OMC data. Knee angles can be estimated from the output of the capacitive sensors through regression models using the ground truth from the OMC data.
en_US
ethz.description.software
The raw data from OMC wwas processed using Vicon Nexus 2.12 software – Woltring filtering was applied on trajectories before the processing of the Plug-in Gait model
en_US
ethz.rosetta.installDate
2024-09-09T14:46:34Z
ethz.rosetta.lastUpdated
2024-09-09T14:46:34Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Textile-based%20Body%20Capacitive%20Sensing%20for%20Movement%20Monitoring&rft.date=2024-09-09&rft.au=Galli,%20Valeria&Menon,%20Carlo&Ahmadizadeh,%20Chakaveh&rft.genre=unknown&rft.btitle=Textile-based%20Body%20Capacitive%20Sensing%20for%20Movement%20Monitoring
 Printexemplar via ETH-Bibliothek suchen

Dateien zu diesem Eintrag

Thumbnail

Publikationstyp

Zur Kurzanzeige