Show simple item record

dc.contributor.author
Li, Danya
dc.contributor.author
Gajardo, Joaquin
dc.contributor.author
Volpi, Michele
dc.contributor.author
Defraeye, Thijs
dc.date.accessioned
2023-10-26T13:42:05Z
dc.date.available
2023-10-26T04:55:03Z
dc.date.available
2023-10-26T13:42:05Z
dc.date.issued
2023-11
dc.identifier.issn
2352-9385
dc.identifier.other
10.1016/j.rsase.2023.101057
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/638611
dc.description.abstract
Crop maps are crucial for agricultural monitoring and food management and can additionally support domain-specific applications, such as setting cold supply chain infrastructure in developing countries. Machine learning (ML) models, combined with freely-available satellite imagery, can be used to produce cost-effective and high spatial-resolution crop maps. However, accessing ground truth data for supervised learning is especially challenging in developing countries due to factors such as smallholding and fragmented geography, which often results in a lack of crop type maps or even reliable cropland maps. Our area of interest for this study lies in Himachal Pradesh, India, where we aim at producing an open-access binary cropland map at 10-m resolution for the Kullu, Shimla, and Mandi districts. To this end, we developed an ML pipeline that relies on Sentinel-2 satellite images time series. We investigated two pixel-based supervised classifiers, support vector machines (SVM) and random forest (RF), which are used to classify per-pixel time series for binary cropland mapping. The ground truth data used for training, validation and testing was manually annotated from a combination of field survey reference points and visual interpretation of very high resolution (VHR) imagery. We trained and validated the models via spatial cross-validation to account for local spatial autocorrelation and improve the generalization capability of the model. We tested the model on hold out test sets of each district, achieving an average accuracy for the RF (our best model) of 87%. We noticed NIR band at the early and late stage of the apple harvest season (main crop in the region) to be of critical importance for the model. Finally, we used this model to generate a cropland map for three districts of Himachal Pradesh, spanning 14,600 km², which improves the resolution and quality of existing public maps, and made the code open-source.
en_US
dc.language.iso
en
en_US
dc.publisher
Elsevier
en_US
dc.subject
Cropland mapping
en_US
dc.subject
Smallholders
en_US
dc.subject
Remote sensing
en_US
dc.subject
High-altitude region
en_US
dc.subject
Random forest
en_US
dc.subject
Feature engineering
en_US
dc.subject
Google earth engine
en_US
dc.subject
Sentinel-2
en_US
dc.title
Using machine learning to generate an open-access cropland map from satellite images time series in the Indian Himalayan region
en_US
dc.type
Journal Article
dc.date.published
2023-09-23
ethz.journal.title
Remote Sensing Applications: Society and Environment
ethz.journal.volume
32
en_US
ethz.pages.start
101057
en_US
ethz.size
13 p.
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02350 - Dep. Umweltsystemwissenschaften / Dep. of Environmental Systems Science::02703 - Institut für Agrarwissenschaften / Institute of Agricultural Sciences::03894 - Walter, Achim / Walter, Achim
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02350 - Dep. Umweltsystemwissenschaften / Dep. of Environmental Systems Science::02703 - Institut für Agrarwissenschaften / Institute of Agricultural Sciences::03894 - Walter, Achim / Walter, Achim
ethz.date.deposited
2023-10-26T04:55:03Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2024-02-03T05:44:19Z
ethz.rosetta.lastUpdated
2024-02-03T05:44:19Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Using%20machine%20learning%20to%20generate%20an%20open-access%20cropland%20map%20from%20satellite%20images%20time%20series%20in%20the%20Indian%20Himalayan%20region&rft.jtitle=Remote%20Sensing%20Applications:%20Society%20and%20Environment&rft.date=2023-11&rft.volume=32&rft.spage=101057&rft.issn=2352-9385&rft.au=Li,%20Danya&Gajardo,%20Joaquin&Volpi,%20Michele&Defraeye,%20Thijs&rft.genre=article&rft_id=info:doi/10.1016/j.rsase.2023.101057&
 Search print copy at ETH Library

Files in this item

FilesSizeFormatOpen in viewer

There are no files associated with this item.

Publication type

Show simple item record