Show simple item record

dc.contributor.author
La Greca Saint-Esteven, Agustina
dc.contributor.author
Dal Bello, Riccardo
dc.contributor.author
Lapaeva, Mariia
dc.contributor.author
Fankhauser, Lisa
dc.contributor.author
Pouymayou, Bertrand
dc.contributor.author
Konukoglu, Ender
dc.contributor.author
Andratschke, Nicolaus
dc.contributor.author
Balermpas, Panagiotis
dc.contributor.author
Guckenberger, Matthias
dc.contributor.author
Tanadini-Lang, Stephanie
dc.date.accessioned
2023-07-26T08:58:22Z
dc.date.available
2023-07-26T04:08:11Z
dc.date.available
2023-07-26T08:58:22Z
dc.date.issued
2023-07
dc.identifier.issn
2405-6316
dc.identifier.other
10.1016/j.phro.2023.100471
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/623981
dc.identifier.doi
10.3929/ethz-b-000623981
dc.description.abstract
Background and purpose: Synthetic computed tomography (sCT) scans are necessary for dose calculation in magnetic resonance (MR)-only radiotherapy. While deep learning (DL) has shown remarkable performance in generating sCT scans from MR images, research has predominantly focused on high-field MR images. This study presents the first implementation of a DL model for sCT generation in head-and-neck (HN) cancer using low-field MR images. Specifically, the use of vision transformers (ViTs) was explored. Materials and methods: The dataset consisted of 31 patients, resulting in 196 pairs of deformably-registered computed tomography (dCT) and MR scans. The latter were obtained using a balanced steady-state precession sequence on a 0.35T scanner. Residual ViTs were trained on 2D axial, sagittal, and coronal slices, respectively, and the final sCTs were generated by averaging the models’ outputs. Different image similarity metrics, dose volume histogram (DVH) deviations, and gamma analyses were computed on the test set (n = 6). The overlap between auto-contours on sCT scans and manual contours on MR images was evaluated for different organs-at-risk using the Dice score. Results: The median [range] value of the test mean absolute error was 57 [37–74] HU. DVH deviations were below 1% for all structures. The median gamma passing rates exceeded 94% in the 2%/2mm analysis (threshold = 90%). The median Dice scores were above 0.7 for all organs-at-risk. Conclusions: The clinical applicability of DL-based sCT generation from low-field MR images in HN cancer was proved. High sCT-dCT similarity and dose metric accuracy were achieved, and sCT suitability for organs-at-risk auto-delineation was shown.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Elsevier
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.title
Synthetic computed tomography for low-field magnetic resonance-only radiotherapy in head-and-neck cancer using residual vision transformers
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2023-07-08
ethz.journal.title
Physics and Imaging in Radiation Oncology
ethz.journal.volume
27
en_US
ethz.pages.start
100471
en_US
ethz.size
7 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Amsterdam
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02652 - Institut für Bildverarbeitung / Computer Vision Laboratory::09579 - Konukoglu, Ender / Konukoglu, Ender
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02652 - Institut für Bildverarbeitung / Computer Vision Laboratory::09579 - Konukoglu, Ender / Konukoglu, Ender
ethz.date.deposited
2023-07-26T04:08:12Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2023-07-26T08:58:23Z
ethz.rosetta.lastUpdated
2024-02-03T02:06:07Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Synthetic%20computed%20tomography%20for%20low-field%20magnetic%20resonance-only%20radiotherapy%20in%20head-and-neck%20cancer%20using%20residual%20vision%20transformers&rft.jtitle=Physics%20and%20Imaging%20in%20Radiation%20Oncology&rft.date=2023-07&rft.volume=27&rft.spage=100471&rft.issn=2405-6316&rft.au=La%20Greca%20Saint-Esteven,%20Agustina&Dal%20Bello,%20Riccardo&Lapaeva,%20Mariia&Fankhauser,%20Lisa&Pouymayou,%20Bertrand&rft.genre=article&rft_id=info:doi/10.1016/j.phro.2023.100471&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record