Understanding congestion propagation by combining percolation theory with the macroscopic fundamental diagram
dc.contributor.author
Ambühl, Lukas
dc.contributor.author
Menendez, Monica
dc.contributor.author
González, Marta C.
dc.date.accessioned
2023-05-12T13:28:03Z
dc.date.available
2023-02-03T06:38:08Z
dc.date.available
2023-02-04T09:05:48Z
dc.date.available
2023-02-06T07:27:13Z
dc.date.available
2023-05-12T13:28:03Z
dc.date.issued
2023-02-01
dc.identifier.issn
2399-3650
dc.identifier.other
10.1038/s42005-023-01144-w
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/596879
dc.identifier.doi
10.3929/ethz-b-000596879
dc.description.abstract
The science of cities aims to model urban phenomena as aggregate properties that are functions of a system’s variables. Following this line of research, this study seeks to combine two well-known approaches in network and transportation science: (i) The macroscopic fundamental diagram (MFD), which examines the characteristics of urban traffic flow at the network level, including the relationship between flow, density, and speed. (ii) Percolation theory, which investigates the topological and dynamical aspects of complex networks, including traffic networks. Combining these two approaches, we find that the maximum number of congested clusters and the maximum MFD flow occur at the same moment, precluding network percolation (i.e. traffic collapse). These insights describe the transition of the average network flow from the uncongested phase to the congested phase in parallel with the percolation transition from sporadic congested links to a large, congested cluster of links. These results can help to better understand network resilience and the mechanisms behind the propagation of traffic congestion and the resulting traffic collapse.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Springer
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
Physics
en_US
dc.subject
Statistical physics, thermodynamicsa and nonlinear dynamics
en_US
dc.title
Understanding congestion propagation by combining percolation theory with the macroscopic fundamental diagram
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
ethz.journal.title
Communications Physics
ethz.journal.volume
6
en_US
ethz.journal.abbreviated
Commun Phys
ethz.pages.start
26
en_US
ethz.size
7 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.notes
Suported by the Swiss National Science Foundation (P1EZP2_181656).
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
London
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.::02610 - Inst. f. Verkehrspl. u. Transportsyst. / Inst. Transport Planning and Systems::08686 - Gruppe Strassenverkehrstechnik
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02100 - Dep. Architektur / Dep. of Architecture::02655 - Netzwerk Stadt u. Landschaft ARCH u BAUG / Network City and Landscape ARCH and BAUG
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.::02610 - Inst. f. Verkehrspl. u. Transportsyst. / Inst. Transport Planning and Systems::08686 - Gruppe Strassenverkehrstechnik
en_US
ethz.tag
Modeling and simulation
en_US
ethz.relation.isSupplementedBy
10.3929/ethz-b-000584669
ethz.date.deposited
2023-02-03T06:38:09Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2023-02-06T07:27:39Z
ethz.rosetta.lastUpdated
2024-02-02T23:07:21Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Understanding%20congestion%20propagation%20by%20combining%20percolation%20theory%20with%20the%20macroscopic%20fundamental%20diagram&rft.jtitle=Communications%20Physics&rft.date=2023-02-01&rft.volume=6&rft.spage=26&rft.issn=2399-3650&rft.au=Amb%C3%BChl,%20Lukas&Menendez,%20Monica&Gonz%C3%A1lez,%20Marta%20C.&rft.genre=article&rft_id=info:doi/10.1038/s42005-023-01144-w&
Dateien zu diesem Eintrag
Publikationstyp
-
Journal Article [131699]