Constraint Handling Techniques for Metaheuristics: A State-of-the-art Review and New Variants
dc.contributor.author
Lagaros, Nikos D.
dc.contributor.author
Kournoutos, Makis
dc.contributor.author
Kallioras, Nikos Ath.
dc.contributor.author
Nordas, Alexandros
dc.date.accessioned
2023-10-18T13:50:54Z
dc.date.available
2023-01-12T15:09:29Z
dc.date.available
2023-02-23T08:55:58Z
dc.date.available
2023-06-06T06:59:59Z
dc.date.available
2023-06-06T13:09:49Z
dc.date.available
2023-06-22T06:57:01Z
dc.date.available
2023-10-11T10:26:13Z
dc.date.available
2023-10-18T13:50:54Z
dc.date.issued
2023-12
dc.identifier.issn
1389-4420
dc.identifier.issn
1573-2924
dc.identifier.other
10.1007/s11081-022-09782-9
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/591997
dc.identifier.doi
10.3929/ethz-b-000591997
dc.description.abstract
Metaheuristic optimization algorithms (MOAs) are computational randomized search processes which draw inspiration from physical and biological phenomena, with an application spectrum that extends to numerous fields, ranging from engineering design to economics. MOAs were originally developed for solving unconstrained NP-complete problems, and hence their application to constrained optimization problems (COPs) requires the implementation of specialized techniques that facilitate the treatment of performance and bound constraints. While considerable research efforts have been oriented towards the development and subsequent enhancement of novel constraint handling techniques (CHTs) for MOAs, a systematic review of such techniques has not been conducted hitherto. This work presents a state-of-the-art review on CHTs used with MOAs and proposes eight novel variants based on the feasibility rules and ε-constrained techniques. The distinctive feature of the new variants is that they consider the level and number of constraint violations, besides the objective function value, for selection of individuals within a population. The novel variant performance is evaluated and compared with that of four well-known CHTs from the literature using the metaheuristic pity beetle algorithm, based upon 20 single-objective benchmark COPs. The computational results highlight the accuracy, effectiveness, and versatility of the novel variants, as well as their performance superiority in comparison with existing techniques, stemming from their distinctive formulation. The complete code can be downloaded from GitHub (https://github.com/nikoslagaros/MOAs-and-CHTs).
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Springer
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
Constrained handling techniques
en_US
dc.subject
Metaheuristic algorithms
en_US
dc.subject
Engineering problems
en_US
dc.subject
Optimization computing platform
en_US
dc.title
Constraint Handling Techniques for Metaheuristics: A State-of-the-art Review and New Variants
en_US
dc.type
Review Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2023-01-17
ethz.journal.title
Optimization and Engineering
ethz.journal.volume
24
en_US
ethz.journal.issue
4
en_US
ethz.journal.abbreviated
Optim Eng
ethz.pages.start
2251
en_US
ethz.pages.end
2298
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Dordrecht
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.::02607 - Institut für Geotechnik / Institute for Geotechnical Engineering
en_US
ethz.date.deposited
2023-01-12T15:09:30Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2023-10-11T10:26:14Z
ethz.rosetta.lastUpdated
2024-02-03T05:21:40Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Constraint%20Handling%20Techniques%20for%20Metaheuristics:%20A%20State-of-the-art%20Review%20and%20New%20Variants&rft.jtitle=Optimization%20and%20Engineering&rft.date=2023-12&rft.volume=24&rft.issue=4&rft.spage=2251&rft.epage=2298&rft.issn=1389-4420&1573-2924&rft.au=Lagaros,%20Nikos%20D.&Kournoutos,%20Makis&Kallioras,%20Nikos%20Ath.&Nordas,%20Alexandros&rft.genre=article&rft_id=info:doi/10.1007/s11081-022-09782-9&
Files in this item
Publication type
-
Review Article [4071]