Show simple item record

dc.contributor.author
Iven, Hélène
dc.contributor.author
Walker, Tom W.N.
dc.contributor.author
Anthony, Mark
dc.date.accessioned
2022-12-13T11:00:30Z
dc.date.available
2022-12-11T18:08:59Z
dc.date.available
2022-12-13T11:00:30Z
dc.date.issued
2023-01
dc.identifier.issn
0343-8651
dc.identifier.issn
1432-0991
dc.identifier.other
10.1007/s00284-022-02979-2
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/586208
dc.identifier.doi
10.3929/ethz-b-000586208
dc.description.abstract
Microbial carbon use efficiency (CUE)—the balance between microbial growth and respiration—strongly impacts microbial mediated soil carbon storage and is sensitive to many well-studied abiotic environmental factors. However, surprisingly, little work has examined how biotic interactions in soil may impact CUE. Here, we review the theoretical and empirical lines of evidence exploring how biotic interactions affect CUE through the lens of life history strategies. Fundamentally, the CUE of a microbial population is constrained by population density and carrying capacity, which, when reached, causes species to grow more quickly and less efficiently. When microbes engage in interspecific competition, they accelerate growth rates to acquire limited resources and release secondary chemicals toxic to competitors. Such processes are not anabolic and thus constrain CUE. In turn, antagonists may activate one of a number of stress responses that also do not involve biomass production, potentially further reducing CUE. In contrast, facilitation can increase CUE by expanding species realized niches, mitigating environmental stress and reducing production costs of extracellular enzymes. Microbial interactions at higher trophic levels also influence CUE. For instance, predation on microbes can positively or negatively impact CUE by changing microbial density and the outcomes of interspecific competition. Finally, we discuss how plants select for more or less efficient microbes under different contexts. In short, this review demonstrates the potential for biotic interactions to be a strong regulator of microbial CUE and additionally provides a blueprint for future research to address key knowledge gaps of ecological and applied importance for carbon sequestration.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Springer
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.title
Biotic Interactions in Soil are Underestimated Drivers of Microbial Carbon Use Efficiency
en_US
dc.type
Review Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2022-12-02
ethz.journal.title
Current Microbiology
ethz.journal.volume
80
en_US
ethz.journal.issue
1
en_US
ethz.journal.abbreviated
Curr Microbiol
ethz.pages.start
13
en_US
ethz.size
14 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
New York, NY
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02350 - Dep. Umweltsystemwissenschaften / Dep. of Environmental Systems Science::02720 - Institut für Integrative Biologie / Institute of Integrative Biology
ethz.date.deposited
2022-12-11T18:09:01Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2022-12-13T11:00:31Z
ethz.rosetta.lastUpdated
2024-02-02T19:09:14Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Biotic%20Interactions%20in%20Soil%20are%20Underestimated%20Drivers%20of%20Microbial%20Carbon%20Use%20Efficiency&rft.jtitle=Current%20Microbiology&rft.date=2023-01&rft.volume=80&rft.issue=1&rft.spage=13&rft.issn=0343-8651&1432-0991&rft.au=Iven,%20H%C3%A9l%C3%A8ne&Walker,%20Tom%20W.N.&Anthony,%20Mark&rft.genre=article&rft_id=info:doi/10.1007/s00284-022-02979-2&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record