Show simple item record

dc.contributor.author
Hollenweger, Yannick
dc.contributor.author
Kochmann, Dennis M.
dc.date.accessioned
2022-10-21T09:02:29Z
dc.date.available
2022-10-21T08:48:20Z
dc.date.available
2022-10-21T09:02:29Z
dc.date.issued
2022-12
dc.identifier.issn
0749-6419
dc.identifier.issn
1879-2154
dc.identifier.other
10.1016/j.ijplas.2022.103448
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/577153
dc.identifier.doi
10.3929/ethz-b-000577153
dc.description.abstract
Experimental evidence suggests that the formation of compressive twin bands and the associated strain localization is a key driver behind the low ductility of magnesium (Mg) at ambient temperature, which is why processing is often performed at elevated temperature. Modeling Mg and its alloys across the temperature range of interest is challenging and must account for the experimentally reported competition between compressive twins and pyramidal slip. Unfortunately, only few temperature-aware models for pure Mg and Mg alloys exist and many either disregard compressive twins entirely or suffer from efficiency or calibration issues, while experimental evidence of the active deformation modes has remained inconclusive. To describe the temperature-dependent behavior we introduce a new efficient, temperature-aware crystal-plasticity framework for pure Mg. Experimental stress–strain and texture data are used to calibrate the model over the range from room temperature to 300 ◦C. The calibrated model predicts single- and polycrystal stress–strain responses accurately in comparison with experimental data. By comparing two versions of the model – with and without compressive twins – we highlight their impact on the microstructure and texture evolution. Results highlight a transition in deformation modes from compressive twins at low temperature to pyramidal II slip at elevated temperature, confirming that the temperature dependence of pure Mg is primarily governed by non-basal slip. We thus provide an accurate and efficient modeling tool for the temperature-dependent mechanical behavior of pure Mg, while also shedding light onto the relative importance of non-basal slip vs. compressive twins as a function of temperature.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Elsevier
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
Magnesium
en_US
dc.subject
Plasticity
en_US
dc.subject
Temperature
en_US
dc.subject
Texture
en_US
dc.subject
Computational modeling
en_US
dc.title
An efficient temperature-dependent crystal plasticity framework for pure magnesium with emphasis on the competition between slip and twinning
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2022-10-07
ethz.journal.title
International Journal of Plasticity
ethz.journal.volume
159
en_US
ethz.journal.abbreviated
Int. J. Plast.
ethz.pages.start
103448
en_US
ethz.size
27 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.scopus
ethz.publication.place
Amsterdam
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02618 - Institut für Mechanische Systeme / Institute of Mechanical Systems::09600 - Kochmann, Dennis / Kochmann, Dennis
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02618 - Institut für Mechanische Systeme / Institute of Mechanical Systems::09600 - Kochmann, Dennis / Kochmann, Dennis
en_US
ethz.date.deposited
2022-10-21T08:48:20Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2022-10-21T09:02:30Z
ethz.rosetta.lastUpdated
2023-02-07T07:17:03Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=An%20efficient%20temperature-dependent%20crystal%20plasticity%20framework%20for%20pure%20magnesium%20with%20emphasis%20on%20the%20competition%20between%20slip%20and%20tw&rft.jtitle=International%20Journal%20of%20Plasticity&rft.date=2022-12&rft.volume=159&rft.spage=103448&rft.issn=0749-6419&1879-2154&rft.au=Hollenweger,%20Yannick&Kochmann,%20Dennis%20M.&rft.genre=article&rft_id=info:doi/10.1016/j.ijplas.2022.103448&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record