Analyzing Patient Trajectories with Artificial Intelligence
dc.contributor.author
Allam, Ahmed
dc.contributor.author
Feuerriegel, Stefan
dc.contributor.author
Rebhan, Michael
dc.contributor.author
Krauthammer, Michael
dc.date.accessioned
2022-01-13T07:50:25Z
dc.date.available
2022-01-13T07:44:19Z
dc.date.available
2022-01-13T07:50:25Z
dc.date.issued
2021-12
dc.identifier.issn
1438-8871
dc.identifier.other
10.2196/29812
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/525110
dc.identifier.doi
10.3929/ethz-b-000525110
dc.description.abstract
In digital medicine, patient data typically record health events over time (eg, through electronic health records, wearables, or other sensing technologies) and thus form unique patient trajectories. Patient trajectories are highly predictive of the future course of diseases and therefore facilitate effective care. However, digital medicine often uses only limited patient data, consisting of health events from only a single or small number of time points while ignoring additional information encoded in patient trajectories. To analyze such rich longitudinal data, new artificial intelligence (AI) solutions are needed. In this paper, we provide an overview of the recent efforts to develop trajectory-aware AI solutions and provide suggestions for future directions. Specifically, we examine the implications for developing disease models from patient trajectories along the typical workflow in AI: problem definition, data processing, modeling, evaluation, and interpretation. We conclude with a discussion of how such AI solutions will allow the field to build robust models for personalized risk scoring, subtyping, and disease pathway discovery.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
JMIR Publications
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
patient trajectories
en_US
dc.subject
longitudinal data
en_US
dc.subject
digital medicine
en_US
dc.subject
artificial intelligence
en_US
dc.subject
machine learning
en_US
dc.title
Analyzing Patient Trajectories with Artificial Intelligence
en_US
dc.type
Review Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2021-12-03
ethz.journal.title
Journal of Medical Internet Research
ethz.journal.volume
23
en_US
ethz.journal.issue
12
en_US
ethz.journal.abbreviated
J Med Internet Res
ethz.pages.start
e29812
en_US
ethz.size
13 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.grant
Data-driven health management
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Toronto
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02120 - Dep. Management, Technologie und Ökon. / Dep. of Management, Technology, and Ec.::09623 - Feuerriegel, Stefan (ehemalig) / Feuerriegel, Stefan (former)
en_US
ethz.grant.agreementno
186932
ethz.grant.fundername
SNF
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.program
Eccellenza
ethz.date.deposited
2021-10-30T11:21:11Z
ethz.source
SCOPUS
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2022-01-13T07:50:31Z
ethz.rosetta.lastUpdated
2022-03-29T17:30:18Z
ethz.rosetta.versionExported
true
dc.identifier.olduri
http://hdl.handle.net/20.500.11850/521195
dc.identifier.olduri
http://hdl.handle.net/20.500.11850/512855
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Analyzing%20Patient%20Trajectories%20with%20Artificial%20Intelligence&rft.jtitle=Journal%20of%20Medical%20Internet%20Research&rft.date=2021-12&rft.volume=23&rft.issue=12&rft.spage=e29812&rft.issn=1438-8871&rft.au=Allam,%20Ahmed&Feuerriegel,%20Stefan&Rebhan,%20Michael&Krauthammer,%20Michael&rft.genre=article&rft_id=info:doi/10.2196/29812&
Files in this item
Publication type
-
Review Article [4066]