A Survey of Topological Machine Learning Methods
dc.contributor.author
Hensel, Felix
dc.contributor.author
Moor, Michael
dc.contributor.author
Rieck, Bastian Alexander
dc.date.accessioned
2021-11-05T11:02:56Z
dc.date.available
2021-11-05T08:09:58Z
dc.date.available
2021-11-05T11:02:56Z
dc.date.issued
2021-05-26
dc.identifier.issn
2624-8212
dc.identifier.other
10.3389/frai.2021.681108
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/513747
dc.identifier.doi
10.3929/ethz-b-000513747
dc.description.abstract
The last decade saw an enormous boost in the field of computational topology: methods and concepts from algebraic and differential topology, formerly confined to the realm of pure mathematics, have demonstrated their utility in numerous areas such as computational biology personalised medicine, and time-dependent data analysis, to name a few. The newly-emerging domain comprising topology-based techniques is often referred to as topological data analysis (TDA). Next to their applications in the aforementioned areas, TDA methods have also proven to be effective in supporting, enhancing, and augmenting both classical machine learning and deep learning models. In this paper, we review the state of the art of a nascent field we refer to as “topological machine learning,” i.e., the successful symbiosis of topology-based methods and machine learning algorithms, such as deep neural networks. We identify common threads, current applications, and future challenges.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Frontiers Media
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
Computational topology
en_US
dc.subject
Persistent homology
en_US
dc.subject
Machine learning
en_US
dc.subject
Topology
en_US
dc.subject
Survey
en_US
dc.subject
Topological machine learning
en_US
dc.title
A Survey of Topological Machine Learning Methods
en_US
dc.type
Review Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2021-05-26
ethz.journal.title
Frontiers in Artificial Intelligence
ethz.journal.volume
4
en_US
ethz.journal.abbreviated
Front. Artif. Intell.
ethz.pages.start
81108
en_US
ethz.size
12 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.grant
TOPAZ: Topology of Alzheimers
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Lausanne
ethz.publication.status
published
en_US
ethz.grant.agreementno
190466
ethz.grant.fundername
SNF
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.program
Spark
ethz.date.deposited
2021-11-05T08:10:01Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2021-11-05T11:03:08Z
ethz.rosetta.lastUpdated
2024-02-02T15:18:57Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=A%20Survey%20of%20Topological%20Machine%20Learning%20Methods&rft.jtitle=Frontiers%20in%20Artificial%20Intelligence&rft.date=2021-05-26&rft.volume=4&rft.spage=81108&rft.issn=2624-8212&rft.au=Hensel,%20Felix&Moor,%20Michael&Rieck,%20Bastian%20Alexander&rft.genre=article&rft_id=info:doi/10.3389/frai.2021.681108&
Files in this item
Publication type
-
Review Article [4070]