Show simple item record

dc.contributor.author
Tosoratti, Enrico
dc.contributor.author
Fisch, Philipp
dc.contributor.author
Taylor, Scott
dc.contributor.author
Laurent-Applegate, Lee Ann
dc.contributor.author
Zenobi-Wong, Marcy
dc.date.accessioned
2022-08-05T05:06:03Z
dc.date.available
2021-10-27T03:02:07Z
dc.date.available
2021-10-28T11:17:40Z
dc.date.available
2021-12-09T18:28:00Z
dc.date.available
2022-08-05T05:06:03Z
dc.date.issued
2021-12-08
dc.identifier.issn
2192-2640
dc.identifier.issn
2192-2659
dc.identifier.other
10.1002/adhm.202101094
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/511951
dc.identifier.doi
10.3929/ethz-b-000511951
dc.description.abstract
Achieving regeneration of articular cartilage is challenging due to the low healing capacity of the tissue. Appropriate selection of cell source, hydrogel, and scaffold materials are critical to obtain good integration and long-term stability of implants in native tissues. Specifically, biomechanical stability and in vivo integration can be improved if the rate of degradation of the scaffold material matches the stiffening of the sample by extracellular matrix secretion of the encapsulated cells. To this end, a novel 3D-printed lactide copolymer is presented as a reinforcement scaffold for an enzymatically crosslinked hyaluronic acid hydrogel. In this system, the biodegradable properties of the reinforced scaffold are matched to the matrix deposition of articular chondrocytes embedded in the hydrogel. The lactide reinforcement provides stability to the soft hydrogel in the early stages, allowing the composite to be directly implanted in vivo with no need for a preculture period. Compared to pure cellular hydrogels, maturation and matrix secretion remain unaffected by the reinforced scaffold. Furthermore, excellent biocompatibility and production of glycosaminoglycans and collagens are observed at all timepoints. Finally, in vivo subcutaneous implantation in nude mice shows cartilage-like tissue maturation, indicating the possibility for the use of these composite materials in one-step surgical procedures.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Wiley
en_US
dc.rights.uri
http://creativecommons.org/licenses/by-nc/4.0/
dc.subject
3D-printing
en_US
dc.subject
cartilage engineering
en_US
dc.subject
enzymatically crosslinked hydrogels
en_US
dc.subject
hybrid reinforcement scaffolds
en_US
dc.subject
lactide-copolymers
en_US
dc.title
3D-Printed Reinforcement Scaffolds with Targeted Biodegradation Properties for the Tissue Engineering of Articular Cartilage
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution-NonCommercial 4.0 International
dc.date.published
2021-10-11
ethz.journal.title
Advanced Healthcare Materials
ethz.journal.volume
10
en_US
ethz.journal.issue
23
en_US
ethz.journal.abbreviated
Adv. Healthcare Mater.
ethz.pages.start
2101094
en_US
ethz.size
11 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Weinheim
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02070 - Dep. Gesundheitswiss. und Technologie / Dep. of Health Sciences and Technology::02518 - Institut für Biomechanik / Institute for Biomechanics::03949 - Zenobi-Wong, Marcy / Zenobi-Wong, Marcy
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02070 - Dep. Gesundheitswiss. und Technologie / Dep. of Health Sciences and Technology::02518 - Institut für Biomechanik / Institute for Biomechanics::03949 - Zenobi-Wong, Marcy / Zenobi-Wong, Marcy
ethz.relation.isSupplementedBy
10.3929/ethz-b-000483107
ethz.date.deposited
2021-10-27T03:03:38Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2021-12-09T18:28:07Z
ethz.rosetta.lastUpdated
2023-02-07T05:04:15Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=3D-Printed%20Reinforcement%20Scaffolds%20with%20Targeted%20Biodegradation%20Properties%20for%20the%20Tissue%20Engineering%20of%20Articular%20Cartilage&rft.jtitle=Advanced%20Healthcare%20Materials&rft.date=2021-12-08&rft.volume=10&rft.issue=23&rft.spage=2101094&rft.issn=2192-2640&2192-2659&rft.au=Tosoratti,%20Enrico&Fisch,%20Philipp&Taylor,%20Scott&Laurent-Applegate,%20Lee%20Ann&Zenobi-Wong,%20Marcy&rft.genre=article&rft_id=info:doi/10.1002/adhm.202101094&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record