Show simple item record

dc.contributor.author
Vanattou-Saïfoudine, Natacha
dc.contributor.author
Han, Chao
dc.contributor.author
Krause, Renate
dc.contributor.author
Vasilaki, Eleni
dc.contributor.author
von der Behrens, Wolfger
dc.contributor.author
Indiveri, Giacomo
dc.date.accessioned
2021-10-04T07:37:02Z
dc.date.available
2021-09-19T02:58:28Z
dc.date.available
2021-10-04T07:37:02Z
dc.date.issued
2021
dc.identifier.issn
2045-2322
dc.identifier.other
10.1038/s41598-021-97217-3
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/505971
dc.identifier.doi
10.3929/ethz-b-000505971
dc.description.abstract
Stimulus-Specific Adaptation (SSA) to repetitive stimulation is a phenomenon that has been observed across many different species and in several brain sensory areas. It has been proposed as a computational mechanism, responsible for separating behaviorally relevant information from the continuous stream of sensory information. Although SSA can be induced and measured reliably in a wide variety of conditions, the network details and intracellular mechanisms giving rise to SSA still remain unclear. Recent computational studies proposed that SSA could be associated with a fast and synchronous neuronal firing phenomenon called Population Spikes (PS). Here, we test this hypothesis using a mean-field rate model and corroborate it using a neuromorphic hardware. As the neuromorphic circuits used in this study operate in real-time with biologically realistic time constants, they can reproduce the same dynamics observed in biological systems, together with the exploration of different connectivity schemes, with complete control of the system parameter settings. Besides, the hardware permits the iteration of multiple experiments over many trials, for extended amounts of time and without losing the networks and individual neural processes being studied. Following this “neuromorphic engineering” approach, we therefore study the PS hypothesis in a biophysically inspired recurrent networks of spiking neurons and evaluate the role of different linear and non-linear dynamic computational primitives such as spike-frequency adaptation or short-term depression (STD). We compare both the theoretical mean-field model of SSA and PS to previously obtained experimental results in the area of novelty detection and observe its behavior on its neuromorphic physical equivalent model. We show how the approach proposed can be extended to other computational neuroscience modelling efforts for understanding high-level phenomena in mechanistic models.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Nature
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.title
A robust model of Stimulus-Specific Adaptation validated on neuromorphic hardware
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2021-09-09
ethz.journal.title
Scientific Reports
ethz.journal.volume
11
en_US
ethz.journal.issue
1
en_US
ethz.journal.abbreviated
Sci Rep
ethz.pages.start
17904
en_US
ethz.size
15 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
London
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02533 - Institut für Neuroinformatik / Institute of Neuroinformatics::09699 - Indiveri, Giacomo / Indiveri, Giacomo
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02533 - Institut für Neuroinformatik / Institute of Neuroinformatics::09474 - Yanik, Mehmet Fatih / Yanik, Mehmet Fatih
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02533 - Institut für Neuroinformatik / Institute of Neuroinformatics::09699 - Indiveri, Giacomo / Indiveri, Giacomo
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02533 - Institut für Neuroinformatik / Institute of Neuroinformatics::09474 - Yanik, Mehmet Fatih / Yanik, Mehmet Fatih
ethz.date.deposited
2021-09-19T02:58:33Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2021-10-04T07:37:24Z
ethz.rosetta.lastUpdated
2024-02-02T14:47:35Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=A%20robust%20model%20of%20Stimulus-Specific%20Adaptation%20validated%20on%20neuromorphic%20hardware&rft.jtitle=Scientific%20Reports&rft.date=2021&rft.volume=11&rft.issue=1&rft.spage=17904&rft.issn=2045-2322&rft.au=Vanattou-Sa%C3%AFfoudine,%20Natacha&Han,%20Chao&Krause,%20Renate&Vasilaki,%20Eleni&von%20der%20Behrens,%20Wolfger&rft.genre=article&rft_id=info:doi/10.1038/s41598-021-97217-3&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record