Show simple item record

dc.contributor.author
Cugno, Gabriele
dc.contributor.author
Patapis, Polychronis
dc.contributor.author
Stolker, Tomas
dc.contributor.author
Quanz, Sascha P.
dc.contributor.author
Boehle, Anna
dc.contributor.author
Hoeijmakers, H.J.
dc.contributor.author
Marleau, Gabriel-Dominique
dc.contributor.author
Mollière, Paul
dc.contributor.author
Nasedkin, Evert
dc.contributor.author
Snellen, Ignas A.G.
dc.date.accessioned
2021-09-28T08:41:32Z
dc.date.available
2021-09-11T02:42:52Z
dc.date.available
2021-09-28T08:41:32Z
dc.date.issued
2021-09
dc.identifier.issn
0004-6361
dc.identifier.issn
1432-0746
dc.identifier.other
10.1051/0004-6361/202140632
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/505268
dc.description.abstract
Context. Determining the chemical properties of the atmosphere of young forming gas giants might shed light on the location their formation occurred and the mechanisms involved. Aims. Our aim was to detect molecules in the atmosphere of the young forming companion PDS70 b by searching for atmospheric absorption features typical of substellar objects. Methods. We obtained medium-resolution (R ≈ 5075) spectra of the PDS70 planetary system with the SINFONI integral field spectrograph at the Very Large Telescope. We applied molecular mapping, based on cross-correlation with synthetic spectra, to identify signatures of molecular species in the atmosphere of the planet. Results. Although the planet emission is clearly detected when resampling the data to lower resolution, no molecular species could be identified with the cross-correlation technique. We estimated upper limits on the abundances of H2O, CO, and CH4 (log(Xmol) < −4.0, − 4.1, and − 4.9, respectively) assuming a clear atmosphere, and we explored the impact of clouds, which increase the upper limits by a factor of up to 0.7 dex. Assuming that the observations directly probe the planet’s atmosphere, we found a lack of molecular species compared to other directly imaged companions or field objects. Under the assumption that the planet atmosphere presents similar characteristics to other directly imaged planets, we conclude that a dusty environment surrounds the planet, effectively obscuring any feature generated in its atmosphere. We quantify the extinction necessary to impede the detection (AV ≈ 16−17 mag), pointing to the possibility of higher optical thickness than previously estimated from other studies. Finally, the non-detection of molecular species conflicts with atmospheric models previously proposed to describe the forming planet. Conclusions. To reveal how giant planets form a comprehensive approach that includes constraints from multiple techniques needs to be undertaken. Molecular mapping emerges as an alternative to more classical techniques like SED fitting. Specifically tuned atmospheric models are likely required to faithfully describe the atmospheres of forming protoplanets, and higher spectral resolution data may reveal molecular absorption lines despite the dusty environment enshrouding PDS70 b.
en_US
dc.language.iso
en
en_US
dc.publisher
EDP Sciences
en_US
dc.subject
techniques: imaging spectroscopy
en_US
dc.subject
planets and satellites: formation
en_US
dc.subject
planets and satellites: atmospheres
en_US
dc.subject
planets and satellites: individual: PDS70
en_US
dc.title
Molecular mapping of the PDS70 system: No molecular absorption signatures from the forming planet PDS70 b
en_US
dc.type
Journal Article
dc.date.published
2021-08-31
ethz.journal.title
Astronomy & Astrophysics
ethz.journal.volume
653
en_US
ethz.journal.abbreviated
Astron. Astrophys.
ethz.pages.start
A12
en_US
ethz.size
15 p.
en_US
ethz.grant
Optimizing and exploiting high-contrast imaging at 3-5 micron for the direct detection of extrasolar planets
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Les Ulis
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02010 - Dep. Physik / Dep. of Physics::02532 - Institut für Teilchen- und Astrophysik / Inst. Particle Physics and Astrophysics::09680 - Quanz, Sascha Patrick / Quanz, Sascha Patrick
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02010 - Dep. Physik / Dep. of Physics::02532 - Institut für Teilchen- und Astrophysik / Inst. Particle Physics and Astrophysics::09680 - Quanz, Sascha Patrick / Quanz, Sascha Patrick
ethz.grant.agreementno
169131
ethz.grant.fundername
SNF
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.program
Projekte MINT
ethz.date.deposited
2021-09-11T02:42:55Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2021-09-28T08:41:38Z
ethz.rosetta.lastUpdated
2022-03-29T13:36:02Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&amp;rft_val_fmt=info:ofi/fmt:kev:mtx:journal&amp;rft.atitle=Molecular%20mapping%20of%20the%20PDS70%20system:%20No%20molecular%20absorption%20signatures%20from%20the%20forming%20planet%20PDS70%20b&amp;rft.jtitle=Astronomy%20&%20Astrophysics&amp;rft.date=2021-09&amp;rft.volume=653&amp;rft.spage=A12&amp;rft.issn=0004-6361&amp;1432-0746&amp;rft.au=Cugno,%20Gabriele&amp;Patapis,%20Polychronis&amp;Stolker,%20Tomas&amp;Quanz,%20Sascha%20P.&amp;Boehle,%20Anna&amp;rft.genre=article&amp;rft_id=info:doi/10.1051/0004-6361/202140632&amp;
 Search print copy at ETH Library

Files in this item

FilesSizeFormatOpen in viewer

There are no files associated with this item.

Publication type

Show simple item record