Predictive density gradient theory based on nonlocal density functional theory
dc.contributor.author
Rehner, Philipp
dc.contributor.author
Groß, Joachim
dc.date.accessioned
2021-09-07T08:57:11Z
dc.date.available
2021-09-07T08:14:26Z
dc.date.available
2021-09-07T08:57:11Z
dc.date.issued
2018-12
dc.identifier.issn
1539-3755
dc.identifier.issn
1063-651X
dc.identifier.issn
1095-3787
dc.identifier.issn
1550-2376
dc.identifier.other
10.1103/physreve.98.063312
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/504503
dc.description.abstract
Density gradient theory has become an important tool for calculating the surface tension of pure components as well as mixtures. The calculation requires knowledge about the so-called influence parameter. Since in most applications this parameter is obtained by fitting results of the density gradient theory to experimental data for surface tensions, the approach lacks predictive power. We propose a predictive density gradient theory based on nonlocal density functional theory (DFT) using the perturbed chain polar statistical associating fluid theory (PCP-SAFT) as equation of state. The formalism can also be applied to other Helmholtz energy functionals based on weighted densities. The predictive density gradient theory (pDGT) is obtained by applying a gradient expansion to the weighted densities of the PCP-SAFT Helmholtz energy functional to second order and expanding the Helmholtz energy density to first order. The resulting model approximates the DFT and can be cast into the form of a density gradient theory. The resulting influence parameter depends on local densities and on temperature. We assess the predictive power of the proposed pDGT to calculate surface tensions of vapor-liquid interfaces of pure components as well as mixtures. The results show that pDGT reduces the computational complexity compared with nonlocal DFT calculations, while largely preserving its accuracy as well as its predictive capability.
en_US
dc.language.iso
en
en_US
dc.publisher
American Physical Society
en_US
dc.title
Predictive density gradient theory based on nonlocal density functional theory
en_US
dc.type
Journal Article
ethz.journal.title
Physical Review E
ethz.journal.volume
98
en_US
ethz.journal.issue
6
en_US
ethz.journal.abbreviated
Phys. rev., E
ethz.pages.start
063312
en_US
ethz.size
10 p.
en_US
ethz.publication.place
Melville, NY
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02668 - Inst. f. Energie- und Verfahrenstechnik / Inst. Energy and Process Engineering
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02668 - Inst. f. Energie- und Verfahrenstechnik / Inst. Energy and Process Engineering::09696 - Bardow, André / Bardow, André
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02668 - Inst. f. Energie- und Verfahrenstechnik / Inst. Energy and Process Engineering::09696 - Bardow, André / Bardow, André
ethz.date.deposited
2021-09-07T08:14:32Z
ethz.source
FORM
ethz.eth
no
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2021-09-07T08:57:22Z
ethz.rosetta.lastUpdated
2022-03-29T11:32:14Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Predictive%20density%20gradient%20theory%20based%20on%20nonlocal%20density%20functional%20theory&rft.jtitle=Physical%20Review%20E&rft.date=2018-12&rft.volume=98&rft.issue=6&rft.spage=063312&rft.issn=1539-3755&1063-651X&1095-3787&1550-2376&rft.au=Rehner,%20Philipp&Gro%C3%9F,%20Joachim&rft.genre=article&rft_id=info:doi/10.1103/physreve.98.063312&
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Journal Article [131589]