VNLSTM-PoseNet: a novel deep ConvNet for real-time 6-DOF camera relocalization in urban streets
dc.contributor.author
Li, Ming
dc.contributor.author
Qin, Jiangying
dc.contributor.author
Li, Deren
dc.contributor.author
Chen, Ruizhi
dc.contributor.author
Liao, Xuan
dc.contributor.author
Guo, Bingxuan
dc.date.accessioned
2021-10-02T13:37:46Z
dc.date.available
2021-08-29T03:24:54Z
dc.date.available
2021-08-30T08:01:48Z
dc.date.available
2021-10-02T13:37:46Z
dc.date.issued
2021
dc.identifier.issn
1993-5153
dc.identifier.issn
1009-5020
dc.identifier.other
10.1080/10095020.2021.1960779
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/502753
dc.identifier.doi
10.3929/ethz-b-000502753
dc.description.abstract
Image-based relocalization is a renewed interest in outdoor environments, because it is an important problem with many applications. PoseNet introduces Convolutional Neural Network (CNN) for the first time to realize the real-time camera pose solution based on a single image. In order to solve the problem of precision and robustness of PoseNet and its improved algorithms in complex environment, this paper proposes and implements a new visual relocation method based on deep convolutional neural networks (VNLSTM-PoseNet). Firstly, this method directly resizes the input image without cropping to increase the receptive field of the training image. Then, the image and the corresponding pose labels are put into the improved Long Short-Term Memory based (LSTM-based) PoseNet network for training and the network is optimized by the Nadam optimizer. Finally, the trained network is used for image localization to obtain the camera pose. Experimental results on outdoor public datasets show our VNLSTM-PoseNet can lead to drastic improvements in relocalization performance compared to existing state-of-the-art CNN-based methods.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Taylor & Francis
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
Camera relocalization
en_US
dc.subject
pose regression
en_US
dc.subject
deep convnet
en_US
dc.subject
RGB image
en_US
dc.subject
camera pose
en_US
dc.title
VNLSTM-PoseNet: a novel deep ConvNet for real-time 6-DOF camera relocalization in urban streets
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2021-08-20
ethz.journal.title
Geo-Spatial Information Science
ethz.journal.volume
24
en_US
ethz.journal.issue
3
en_US
ethz.journal.abbreviated
Geo-spat. Inf. Sci.
ethz.pages.start
422
en_US
ethz.pages.end
437
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.publication.place
Abingdon
en_US
ethz.publication.status
published
en_US
ethz.date.deposited
2021-08-29T03:25:25Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2021-10-02T13:37:54Z
ethz.rosetta.lastUpdated
2022-03-29T13:48:26Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=VNLSTM-PoseNet:%20a%20novel%20deep%20ConvNet%20for%20real-time%206-DOF%20camera%20relocalization%20in%20urban%20streets&rft.jtitle=Geo-Spatial%20Information%20Science&rft.date=2021&rft.volume=24&rft.issue=3&rft.spage=422&rft.epage=437&rft.issn=1993-5153&1009-5020&rft.au=Li,%20Ming&Qin,%20Jiangying&Li,%20Deren&Chen,%20Ruizhi&Liao,%20Xuan&rft.genre=article&rft_id=info:doi/10.1080/10095020.2021.1960779&
Files in this item
Publication type
-
Journal Article [131860]