Zur Kurzanzeige

dc.contributor.author
Polit, Lélia
dc.contributor.author
Kerdivel, Gwenneg
dc.contributor.author
Gregoricchio, Sebastian
dc.contributor.author
Esposito, Michela
dc.contributor.author
Guillouf, Christel
dc.contributor.author
Boeva, Valentina
dc.date.accessioned
2021-08-24T15:07:05Z
dc.date.available
2021-08-23T02:47:34Z
dc.date.available
2021-08-24T15:07:05Z
dc.date.issued
2021-08-17
dc.identifier.issn
1471-2105
dc.identifier.other
10.1186/s12859-021-04320-3
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/501750
dc.identifier.doi
10.3929/ethz-b-000501750
dc.description.abstract
Background Multiple studies rely on ChIP-seq experiments to assess the effect of gene modulation and drug treatments on protein binding and chromatin structure. However, most methods commonly used for the normalization of ChIP-seq binding intensity signals across conditions, e.g., the normalization to the same number of reads, either assume a constant signal-to-noise ratio across conditions or base the estimates of correction factors on genomic regions with intrinsically different signals between conditions. Inaccurate normalization of ChIP-seq signal may, in turn, lead to erroneous biological conclusions. Results We developed a new R package, CHIPIN, that allows normalizing ChIP-seq signals across different conditions/samples when spike-in information is not available, but gene expression data are at hand. Our normalization technique is based on the assumption that, on average, no differences in ChIP-seq signals should be observed in the regulatory regions of genes whose expression levels are constant across samples/conditions. In addition to normalizing ChIP-seq signals, CHIPIN provides as output a number of graphs and calculates statistics allowing the user to assess the efficiency of the normalization and qualify the specificity of the antibody used. In addition to ChIP-seq, CHIPIN can be used without restriction on open chromatin ATAC-seq or DNase hypersensitivity data. We validated the CHIPIN method on several ChIP-seq data sets and documented its superior performance in comparison to several commonly used normalization techniques. Conclusions The CHIPIN method provides a new way for ChIP-seq signal normalization across conditions when spike-in experiments are not available. The method is implemented in a user-friendly R package available on GitHub: https://github.com/BoevaLab/CHIPIN
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
BioMed Central
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
ChIP-seq
en_US
dc.subject
Open chromatin
en_US
dc.subject
Normalization
en_US
dc.subject
Density profiles
en_US
dc.subject
Gene expression
en_US
dc.subject
Algorithm
en_US
dc.subject
R package
en_US
dc.title
CHIPIN: ChIP-seq inter-sample normalization based on signal invariance across transcriptionally constant genes
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
ethz.journal.title
BMC Bioinformatics
ethz.journal.volume
22
en_US
ethz.journal.issue
1
en_US
ethz.pages.start
407
en_US
ethz.size
14 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
London
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02661 - Institut für Maschinelles Lernen / Institute for Machine Learning::09671 - Boeva, Valentina / Boeva, Valentina
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02661 - Institut für Maschinelles Lernen / Institute for Machine Learning::09671 - Boeva, Valentina / Boeva, Valentina
ethz.date.deposited
2021-08-23T02:47:45Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2021-08-24T15:07:13Z
ethz.rosetta.lastUpdated
2023-02-06T22:21:46Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=CHIPIN:%20ChIP-seq%20inter-sample%20normalization%20based%20on%20signal%20invariance%20across%20transcriptionally%20constant%20genes&rft.jtitle=BMC%20Bioinformatics&rft.date=2021-08-17&rft.volume=22&rft.issue=1&rft.spage=407&rft.issn=1471-2105&rft.au=Polit,%20L%C3%A9lia&Kerdivel,%20Gwenneg&Gregoricchio,%20Sebastian&Esposito,%20Michela&Guillouf,%20Christel&rft.genre=article&rft_id=info:doi/10.1186/s12859-021-04320-3&
 Printexemplar via ETH-Bibliothek suchen

Dateien zu diesem Eintrag

Thumbnail

Publikationstyp

Zur Kurzanzeige