Show simple item record

dc.contributor.author
Cafarelli, Andrea
dc.contributor.author
Marino, Attilio
dc.contributor.author
Vannozzi, Lorenzo
dc.contributor.author
Puigmarti-Luis, Josep
dc.contributor.author
Pané, Salvador
dc.contributor.author
Ciofani, Gianni
dc.contributor.author
Ricotti, Leonardo
dc.date.accessioned
2021-08-24T09:06:48Z
dc.date.available
2021-08-21T03:00:31Z
dc.date.available
2021-08-24T09:06:48Z
dc.date.issued
2021-07-27
dc.identifier.issn
1936-0851
dc.identifier.issn
1936-086X
dc.identifier.other
10.1021/acsnano.1c03087
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/501652
dc.identifier.doi
10.3929/ethz-b-000501652
dc.description.abstract
Electrical stimulation has shown great promise in biomedical applications, such as regenerative medicine, neuromodulation, and cancer treatment. Yet, the use of electrical end effectors such as electrodes requires connectors and batteries, which dramatically hamper the translation of electrical stimulation technologies in several scenarios. Piezoelectric nanomaterials can overcome the limitations of current electrical stimulation procedures as they can be wirelessly activated by external energy sources such as ultrasound. Wireless electrical stimulation mediated by piezoelectric nanoarchitectures constitutes an innovative paradigm enabling the induction of electrical cues within the body in a localized, wireless, and minimally invasive fashion. In this review, we highlight the fundamental mechanisms of acoustically mediated piezoelectric stimulation and its applications in the biomedical area. Yet, the adoption of this technology in a clinical practice is in its infancy, as several open issues, such as piezoelectric properties measurement, control of the ultrasound dose in vitro, modeling and measurement of the piezo effects, knowledge on the triggered bioeffects, therapy targeting, biocompatibility studies, and control of the ultrasound dose delivered in vivo, must be addressed. This article explores the current open challenges in piezoelectric stimulation and proposes strategies that may guide future research efforts in this field toward the translation of this technology to the clinical scene.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
American Chemical Society
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
piezoelectric nanomaterials
en_US
dc.subject
ultrasound
en_US
dc.subject
electric stimuli
en_US
dc.subject
piezoelectric effect
en_US
dc.subject
mechanoelectrical transduction
en_US
dc.subject
neuromodulation
en_US
dc.subject
regenerative medicine
en_US
dc.subject
cancer treatment
en_US
dc.title
Piezoelectric Nanomaterials Activated by Ultrasound: The Pathway from Discovery to Future Clinical Adoption
en_US
dc.type
Review Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2021-07-12
ethz.journal.title
ACS Nano
ethz.journal.volume
15
en_US
ethz.journal.issue
7
en_US
ethz.journal.abbreviated
ACS Nano
ethz.pages.start
11066
en_US
ethz.pages.end
11086
en_US
ethz.size
21 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.grant
Highly Integrated Nanoscale Robots for Targeted Delivery to the Central Nervous System
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Washington, DC
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02620 - Inst. f. Robotik u. Intelligente Systeme / Inst. Robotics and Intelligent Systems::03627 - Nelson, Bradley J. / Nelson, Bradley J.::08705 - Gruppe Pané Vidal
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02620 - Inst. f. Robotik u. Intelligente Systeme / Inst. Robotics and Intelligent Systems::03627 - Nelson, Bradley J. / Nelson, Bradley J.::08705 - Gruppe Pané Vidal
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02620 - Inst. f. Robotik u. Intelligente Systeme / Inst. Robotics and Intelligent Systems::03627 - Nelson, Bradley J. / Nelson, Bradley J.::08705 - Gruppe Pané Vidal
ethz.grant.agreementno
771565C
ethz.grant.fundername
EC
ethz.grant.funderDoi
10.13039/501100000780
ethz.grant.program
H2020
ethz.date.deposited
2021-08-21T03:00:44Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2021-08-24T09:06:54Z
ethz.rosetta.lastUpdated
2024-02-02T14:33:34Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Piezoelectric%20Nanomaterials%20Activated%20by%20Ultrasound:%20The%20Pathway%20from%20Discovery%20to%20Future%20Clinical%20Adoption&rft.jtitle=ACS%20Nano&rft.date=2021-07-27&rft.volume=15&rft.issue=7&rft.spage=11066&rft.epage=11086&rft.issn=1936-0851&1936-086X&rft.au=Cafarelli,%20Andrea&Marino,%20Attilio&Vannozzi,%20Lorenzo&Puigmarti-Luis,%20Josep&Pan%C3%A9,%20Salvador&rft.genre=article&rft_id=info:doi/10.1021/acsnano.1c03087&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record