Knowledge transfer across cell lines using hybrid Gaussian process models with entity embedding vectors
dc.contributor.author
Hutter, Clemens
dc.contributor.author
von Stosch, Moritz
dc.contributor.author
Cruz Bournazou, Mariano N.
dc.contributor.author
Butté, Alessandro
dc.date.accessioned
2021-10-13T19:05:48Z
dc.date.available
2021-08-20T02:36:56Z
dc.date.available
2021-09-03T07:58:23Z
dc.date.available
2021-10-13T19:05:48Z
dc.date.issued
2021-11
dc.identifier.issn
0006-3592
dc.identifier.issn
1097-0290
dc.identifier.other
10.1002/bit.27907
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/501426
dc.description.abstract
To date, a large number of experiments are performed to develop a biochemical process. The generated data is used only once, to take decisions for development. Could we exploit data of already developed processes to make predictions for a novel process, we could significantly reduce the number of experiments needed. Processes for different products exhibit differences in behaviour, typically only a subset behave similar. Therefore, effective learning on multiple product spanning process data requires a sensible representation of the product identity. We propose to represent the product identity (a categorical feature) by embedding vectors that serve as input to a Gaussian process regression model. We demonstrate how the embedding vectors can be learned from process data and show that they capture an interpretable notion of product similarity. The improvement in performance is compared to traditional one-hot encoding on a simulated cross product learning task. All in all, the proposed method could render possible significant reductions in wet-lab experiments.
en_US
dc.language.iso
en
en_US
dc.publisher
Wiley
en_US
dc.subject
bioprocess development
en_US
dc.subject
cell culture
en_US
dc.subject
embedding vector
en_US
dc.subject
Gaussian process regression
en_US
dc.subject
hybrid semi-parametric modeling
en_US
dc.subject
transversal data analysis
en_US
dc.title
Knowledge transfer across cell lines using hybrid Gaussian process models with entity embedding vectors
en_US
dc.type
Journal Article
dc.date.published
2021-08-03
ethz.journal.title
Biotechnology and Bioengineering
ethz.journal.volume
118
en_US
ethz.journal.issue
11
en_US
ethz.journal.abbreviated
Biotechnol. Bioeng.
ethz.pages.start
4389
en_US
ethz.pages.end
4401
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
New York, NY
en_US
ethz.publication.status
published
en_US
ethz.date.deposited
2021-08-20T02:37:20Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2021-10-13T19:05:53Z
ethz.rosetta.lastUpdated
2021-10-13T19:05:54Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Knowledge%20transfer%20across%20cell%20lines%20using%20hybrid%20Gaussian%20process%20models%20with%20entity%20embedding%20vectors&rft.jtitle=Biotechnology%20and%20Bioengineering&rft.date=2021-11&rft.volume=118&rft.issue=11&rft.spage=4389&rft.epage=4401&rft.issn=0006-3592&1097-0290&rft.au=Hutter,%20Clemens&von%20Stosch,%20Moritz&Cruz%20Bournazou,%20Mariano%20N.&Butt%C3%A9,%20Alessandro&rft.genre=article&rft_id=info:doi/10.1002/bit.27907&
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Journal Article [131422]