Transition from shear-dominated to Rayleigh-Taylor turbulence
dc.contributor.author
Brizzolara, Stefano
dc.contributor.author
Mollicone, Jean-Paul
dc.contributor.author
van Reeuwijk, Maarten
dc.contributor.author
Mazzino, Andrea
dc.contributor.author
Holzner, Markus
dc.date.accessioned
2022-03-01T11:06:04Z
dc.date.available
2021-08-12T03:10:49Z
dc.date.available
2021-08-12T11:48:40Z
dc.date.available
2022-03-01T11:06:04Z
dc.date.issued
2021-10-10
dc.identifier.issn
0022-1120
dc.identifier.issn
1469-7645
dc.identifier.other
10.1017/jfm.2021.564
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/500555
dc.identifier.doi
10.3929/ethz-b-000500555
dc.description.abstract
Turbulent mixing layers in nature are often characterised by the presence of a mean shear and an unstable buoyancy gradient between two streams of different velocities. Depending on the relative strength of shear versus buoyancy, either the former or the latter may dominate the turbulence and mixing between the two streams. In this paper, we present a phenomenological theory that leads to the identification of two distinct turbulent regimes: an early regime, dominated by mean shear, and a later regime dominated by buoyancy. The main theoretical result consists of the identification of a cross-over timescale that distinguishes between the shear- and the buoyancy-dominated turbulence. This cross-over time depends on three large-scale constants of the flow, namely, the buoyancy difference, the velocity difference between the two streams and the gravitational acceleration. We validate our theory against direct numerical simulations of a temporal turbulent mixing layer compounded with an unstable stratification. We observe that the cross-over time correctly predicts the transition from shear- to buoyancy-driven turbulence, in terms of turbulent kinetic energy production, energy spectra scaling and mixing layer thickness.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Cambridge University Press
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
shear layer turbulence
en_US
dc.subject
stratified turbulence
en_US
dc.title
Transition from shear-dominated to Rayleigh-Taylor turbulence
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2021-08-05
ethz.journal.title
Journal of Fluid Mechanics
ethz.journal.volume
924
en_US
ethz.journal.abbreviated
J. Fluid Mech.
ethz.pages.start
A10
en_US
ethz.size
13 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Cambridge
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.
en_US
ethz.date.deposited
2021-08-12T03:11:52Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2021-08-12T11:48:45Z
ethz.rosetta.lastUpdated
2022-03-29T20:04:46Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Transition%20from%20shear-dominated%20to%20Rayleigh-Taylor%20turbulence&rft.jtitle=Journal%20of%20Fluid%20Mechanics&rft.date=2021-10-10&rft.volume=924&rft.spage=A10&rft.issn=0022-1120&1469-7645&rft.au=Brizzolara,%20Stefano&Mollicone,%20Jean-Paul&van%20Reeuwijk,%20Maarten&Mazzino,%20Andrea&Holzner,%20Markus&rft.genre=article&rft_id=info:doi/10.1017/jfm.2021.564&
Files in this item
Publication type
-
Journal Article [131718]