Show simple item record

dc.contributor.author
Gähwiler, Eric K.N.
dc.contributor.author
Motta, Sarah E.
dc.contributor.author
Martin, Marcy
dc.contributor.author
Nugraha, Bramasta
dc.contributor.author
Hoerstrup, Simon P.
dc.contributor.author
Emmert, Maximilian Y.
dc.date.accessioned
2021-07-19T13:59:06Z
dc.date.available
2021-07-18T02:26:03Z
dc.date.available
2021-07-19T13:59:06Z
dc.date.issued
2021-06-28
dc.identifier.issn
2296-634X
dc.identifier.other
10.3389/fcell.2021.639699
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/495620
dc.identifier.doi
10.3929/ethz-b-000495620
dc.description.abstract
Induced pluripotent stem cells (iPSCs) originate from the reprogramming of adult somatic cells using four Yamanaka transcription factors. Since their discovery, the stem cell (SC) field achieved significant milestones and opened several gateways in the area of disease modeling, drug discovery, and regenerative medicine. In parallel, the emergence of clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (CRISPR-Cas9) revolutionized the field of genome engineering, allowing the generation of genetically modified cell lines and achieving a precise genome recombination or random insertions/deletions, usefully translated for wider applications. Cardiovascular diseases represent a constantly increasing societal concern, with limited understanding of the underlying cellular and molecular mechanisms. The ability of iPSCs to differentiate into multiple cell types combined with CRISPR-Cas9 technology could enable the systematic investigation of pathophysiological mechanisms or drug screening for potential therapeutics. Furthermore, these technologies can provide a cellular platform for cardiovascular tissue engineering (TE) approaches by modulating the expression or inhibition of targeted proteins, thereby creating the possibility to engineer new cell lines and/or fine-tune biomimetic scaffolds. This review will focus on the application of iPSCs, CRISPR-Cas9, and a combination thereof to the field of cardiovascular TE. In particular, the clinical translatability of such technologies will be discussed ranging from disease modeling to drug screening and TE applications.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Frontiers Media
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
human induced pluripotent stem cells (hiPSCs)
en_US
dc.subject
CRISPR-Cas9
en_US
dc.subject
cardiovascular tissue engineering
en_US
dc.subject
regenerative medicine
en_US
dc.subject
cardiovascular disease modeling
en_US
dc.subject
3D cell culture systems
en_US
dc.title
Human iPSCs and Genome Editing Technologies for Precision Cardiovascular Tissue Engineering
en_US
dc.type
Review Article
dc.rights.license
Creative Commons Attribution 4.0 International
ethz.journal.title
Frontiers in Cell and Developmental Biology
ethz.journal.volume
9
en_US
ethz.journal.abbreviated
Front. Cell Dev. Biol.
ethz.pages.start
639699
en_US
ethz.size
21 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Lausanne
ethz.publication.status
published
en_US
ethz.date.deposited
2021-07-18T02:26:14Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2021-07-19T13:59:12Z
ethz.rosetta.lastUpdated
2024-02-02T14:21:39Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Human%20iPSCs%20and%20Genome%20Editing%20Technologies%20for%20Precision%20Cardiovascular%20Tissue%20Engineering&rft.jtitle=Frontiers%20in%20Cell%20and%20Developmental%20Biology&rft.date=2021-06-28&rft.volume=9&rft.spage=639699&rft.issn=2296-634X&rft.au=G%C3%A4hwiler,%20Eric%20K.N.&Motta,%20Sarah%20E.&Martin,%20Marcy&Nugraha,%20Bramasta&Hoerstrup,%20Simon%20P.&rft.genre=article&rft_id=info:doi/10.3389/fcell.2021.639699&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record