Model-based prediction of muscarinic receptor function from auditory mismatch negativity responses
dc.contributor.author
Schöbi, Dario
dc.contributor.author
Homberg, Fabienne
dc.contributor.author
Frässle, Stefan
dc.contributor.author
Endepols, Heike
dc.contributor.author
Moran, Rosalyn J.
dc.contributor.author
Friston, Karl J.
dc.contributor.author
Tittgemeyer, Marc
dc.contributor.author
Heinzle, Jakob
dc.contributor.author
Stephan, Klaas
dc.date.accessioned
2021-05-25T10:45:07Z
dc.date.available
2021-05-21T02:25:57Z
dc.date.available
2021-05-25T10:45:07Z
dc.date.issued
2021-08-15
dc.identifier.issn
1053-8119
dc.identifier.issn
1095-9572
dc.identifier.other
10.1016/j.neuroimage.2021.118096
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/485527
dc.identifier.doi
10.3929/ethz-b-000485527
dc.description.abstract
Drugs affecting neuromodulation, for example by dopamine or acetylcholine, take centre stage among therapeutic strategies in psychiatry. These neuromodulators can change both neuronal gain and synaptic plasticity and therefore affect electrophysiological measures. An important goal for clinical diagnostics is to exploit this effect in the reverse direction, i.e., to infer the status of specific neuromodulatory systems from electrophysiological measures.
In this study, we provide proof-of-concept that the functional status of cholinergic (specifically muscarinic) receptors can be inferred from electrophysiological data using generative (dynamic causal) models. To this end, we used epidural EEG recordings over two auditory cortical regions during a mismatch negativity (MMN) paradigm in rats. All animals were treated, across sessions, with muscarinic receptor agonists and antagonists at different doses. Together with a placebo condition, this resulted in five levels of muscarinic receptor status. Using a dynamic causal model - embodying a small network of coupled cortical microcircuits - we estimated synaptic parameters and their change across pharmacological conditions. The ensuing parameter estimates associated with (the neuromodulation of) synaptic efficacy showed both graded muscarinic effects and predictive validity between agonistic and antagonistic pharmacological conditions.
This finding illustrates the potential utility of generative models of electrophysiological data as computational assays of muscarinic function. In application to EEG data of patients from heterogeneous spectrum diseases, e.g. schizophrenia, such models might help identify subgroups of patients that respond differentially to cholinergic treatments.
Significance Statement
In psychiatry, the vast majority of pharmacological treatments affect actions of neuromodulatory transmitters, e.g. dopamine or acetylcholine. As treatment is largely trial-and-error based, one of the goals for computational psychiatry is to construct mathematical models that can serve as “computational assays” and infer the status of specific neuromodulatory systems in individual patients. This translational neuromodeling strategy has great promise for electrophysiological data in particular but requires careful validation. The present study demonstrates that the functional status of cholinergic (muscarinic) receptors can be inferred from electrophysiological data using dynamic causal models of neural circuits. While accuracy needs to be enhanced and our results must be replicated in larger samples, our current results provide proof-of-concept for computational assays of muscarinic function using EEG.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Elsevier
en_US
dc.rights.uri
http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject
acetylcholine
en_US
dc.subject
computational assay
en_US
dc.subject
generative embedding
en_US
dc.subject
translational neuromodeling
en_US
dc.subject
computational psychiatry
en_US
dc.title
Model-based prediction of muscarinic receptor function from auditory mismatch negativity responses
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
dc.date.published
2021-05-01
ethz.journal.title
NeuroImage
ethz.journal.volume
237
en_US
ethz.journal.abbreviated
NeuroImage
ethz.pages.start
118096
en_US
ethz.size
13 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Amsterdam
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02631 - Institut für Biomedizinische Technik / Institute for Biomedical Engineering::03955 - Stephan, Klaas E. / Stephan, Klaas E.
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02631 - Institut für Biomedizinische Technik / Institute for Biomedical Engineering::03955 - Stephan, Klaas E. / Stephan, Klaas E.
ethz.date.deposited
2021-05-21T02:26:00Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2021-05-25T10:45:15Z
ethz.rosetta.lastUpdated
2023-02-06T21:49:29Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Model-based%20prediction%20of%20muscarinic%20receptor%20function%20from%20auditory%20mismatch%20negativity%20responses&rft.jtitle=NeuroImage&rft.date=2021-08-15&rft.volume=237&rft.spage=118096&rft.issn=1053-8119&1095-9572&rft.au=Sch%C3%B6bi,%20Dario&Homberg,%20Fabienne&Fr%C3%A4ssle,%20Stefan&Endepols,%20Heike&Moran,%20Rosalyn%20J.&rft.genre=article&rft_id=info:doi/10.1016/j.neuroimage.2021.118096&
Dateien zu diesem Eintrag
Publikationstyp
-
Journal Article [131354]