Regression dynamic causal modeling for resting‐state fMRI
dc.contributor.author
Frässle, Stefan
dc.contributor.author
Harrison, Samuel J.
dc.contributor.author
Heinzle, Jakob
dc.contributor.author
Clementz, Brett A.
dc.contributor.author
Tamminga, Carol A.
dc.contributor.author
Sweeney, John A.
dc.contributor.author
Gershon, Elliot S.
dc.contributor.author
Keshavan, Matcheri S.
dc.contributor.author
Pearlson, Godfrey D.
dc.contributor.author
Powers, Albert
dc.contributor.author
Stephan, Klaas
dc.date.accessioned
2021-05-27T14:09:11Z
dc.date.available
2021-04-24T03:11:52Z
dc.date.available
2021-04-27T06:58:23Z
dc.date.available
2021-05-27T14:09:11Z
dc.date.issued
2021-05
dc.identifier.issn
1097-0193
dc.identifier.issn
1065-9471
dc.identifier.other
10.1002/hbm.25357
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/480348
dc.identifier.doi
10.3929/ethz-b-000480348
dc.description.abstract
“Resting-state” functional magnetic resonance imaging (rs-fMRI) is widely used to study brain connectivity. So far, researchers have been restricted to measures of functional connectivity that are computationally efficient but undirected, or to effective connectivity estimates that are directed but limited to small networks. Here, we show that a method recently developed for task-fMRI—regression dynamic causal modeling (rDCM)—extends to rs-fMRI and offers both directional estimates and scalability to whole-brain networks. First, simulations demonstrate that rDCM faithfully recovers parameter values over a wide range of signal-to-noise ratios and repetition times. Second, we test construct validity of rDCM in relation to an established model of effective connectivity, spectral DCM. Using rs-fMRI data from nearly 200 healthy participants, rDCM produces biologically plausible results consistent with estimates by spectral DCM. Importantly, rDCM is computationally highly efficient, reconstructing whole-brain networks (>200 areas) within minutes on standard hardware. This opens promising new avenues for connectomics.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Wiley
en_US
dc.rights.uri
http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject
connectomics
en_US
dc.subject
effective connectivity
en_US
dc.subject
generative model
en_US
dc.subject
hierarchy
en_US
dc.subject
regression dynamic causal modeling
en_US
dc.subject
resting state
en_US
dc.title
Regression dynamic causal modeling for resting‐state fMRI
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
dc.date.published
2021-02-04
ethz.journal.title
Human Brain Mapping
ethz.journal.volume
42
en_US
ethz.journal.issue
7
en_US
ethz.journal.abbreviated
Hum Brain Mapp
ethz.pages.start
2159
en_US
ethz.pages.end
2180
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
New York, NY
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02631 - Institut für Biomedizinische Technik / Institute for Biomedical Engineering::03955 - Stephan, Klaas E. / Stephan, Klaas E.
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02631 - Institut für Biomedizinische Technik / Institute for Biomedical Engineering::03955 - Stephan, Klaas E. / Stephan, Klaas E.
ethz.date.deposited
2021-04-24T03:11:56Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2021-04-27T06:58:33Z
ethz.rosetta.lastUpdated
2024-02-02T13:48:32Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Regression%20dynamic%20causal%20modeling%20for%20resting%E2%80%90state%20fMRI&rft.jtitle=Human%20Brain%20Mapping&rft.date=2021-05&rft.volume=42&rft.issue=7&rft.spage=2159&rft.epage=2180&rft.issn=1097-0193&1065-9471&rft.au=Fr%C3%A4ssle,%20Stefan&Harrison,%20Samuel%20J.&Heinzle,%20Jakob&Clementz,%20Brett%20A.&Tamminga,%20Carol%20A.&rft.genre=article&rft_id=info:doi/10.1002/hbm.25357&
Files in this item
Publication type
-
Journal Article [131639]