Zur Kurzanzeige

dc.contributor.author
Locatello, Francesco
dc.contributor.author
Bauer, Stefan
dc.contributor.author
Lucic, Mario
dc.contributor.author
Rätsch, Gunnar
dc.contributor.author
Gelly, Sylvain
dc.contributor.author
Schölkopf, Bernhard
dc.contributor.author
Bachem, Olivier
dc.date.accessioned
2020-12-07T07:51:57Z
dc.date.available
2020-12-07T07:51:57Z
dc.date.issued
2020-09
dc.identifier.issn
1532-4435
dc.identifier.issn
1533-7928
dc.identifier.uri
http://hdl.handle.net/20.500.11850/454903
dc.identifier.doi
10.3929/ethz-b-000450167
dc.description.abstract
The idea behind the unsupervised learning of disentangled representations is that real-world data is generated by a few explanatory factors of variation which can be recovered by unsupervised learning algorithms. In this paper, we provide a sober look at recent progress in the field and challenge some common assumptions. We first theoretically show that the unsupervised learning of disentangled representations is fundamentally impossible without inductive biases on both the models and the data. Then, we train over 14000 models covering most prominent methods and evaluation metrics in a reproducible large-scale experimental study on eight data sets. We observe that while the different methods successfully enforce properties “encouraged” by the corresponding losses, well-disentangled models seemingly cannot be identified without supervision. Furthermore, different evaluation metrics do not always agree on what should be considered “disentangled” and exhibit systematic differences in the estimation. Finally, increased disentanglement does not seem to necessarily lead to a decreased sample complexity of learning for downstream tasks. Our results suggest that future work on disentanglement learning should be explicit about the role of inductive biases and (implicit) supervision, investigate concrete benefits of enforcing disentanglement of the learned representations, and consider a reproducible experimental setup covering several data sets.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
MIT Press
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
Disentangled representations
en_US
dc.subject
Impossibility
en_US
dc.subject
Evaluation
en_US
dc.subject
Reproducibility
en_US
dc.subject
Large scale experimental study
en_US
dc.title
A Sober Look at the Unsupervised Learning of Disentangled Representations and their Evaluation
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
ethz.journal.title
Journal of Machine Learning Research
ethz.journal.volume
21
en_US
ethz.journal.abbreviated
J. Mach. Learn. Res.
ethz.pages.start
209
en_US
ethz.size
62 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Cambridge, MA
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02661 - Institut für Maschinelles Lernen / Institute for Machine Learning::09664 - Schölkopf, Bernhard / Schölkopf, Bernhard
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02661 - Institut für Maschinelles Lernen / Institute for Machine Learning::09664 - Schölkopf, Bernhard / Schölkopf, Bernhard
ethz.identifier.url
https://www.jmlr.org/papers/v21/19-976.html
ethz.relation.isNewVersionOf
handle/20.500.11850/464785
ethz.date.deposited
2020-11-08T04:00:04Z
ethz.source
SCOPUS
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2020-12-07T07:52:11Z
ethz.rosetta.lastUpdated
2024-02-02T12:38:36Z
ethz.rosetta.versionExported
true
dc.identifier.olduri
http://hdl.handle.net/20.500.11850/450167
dc.identifier.olduri
http://hdl.handle.net/20.500.11850/454062
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=A%20Sober%20Look%20at%20the%20Unsupervised%20Learning%20of%20Disentangled%20Representations%20and%20their%20Evaluation&rft.jtitle=Journal%20of%20Machine%20Learning%20Research&rft.date=2020-09&rft.volume=21&rft.spage=209&rft.issn=1532-4435&1533-7928&rft.au=Locatello,%20Francesco&Bauer,%20Stefan&Lucic,%20Mario&R%C3%A4tsch,%20Gunnar&Gelly,%20Sylvain&rft.genre=article&
 Printexemplar via ETH-Bibliothek suchen

Dateien zu diesem Eintrag

Thumbnail

Publikationstyp

Zur Kurzanzeige