Zur Kurzanzeige

dc.contributor.author
Liu, Tian
dc.contributor.author
Yan, Runyu
dc.contributor.author
Huang, Haijian
dc.contributor.author
Pan, Long
dc.contributor.author
Cao, Xiaobao
dc.contributor.author
de Mello, Andrew J.
dc.contributor.author
Niederberger, Markus
dc.date.accessioned
2020-11-13T08:10:47Z
dc.date.available
2020-09-23T02:40:36Z
dc.date.available
2020-09-23T14:13:46Z
dc.date.available
2020-11-13T08:10:47Z
dc.date.issued
2020-11-11
dc.identifier.issn
1616-3028
dc.identifier.issn
1616-301X
dc.identifier.other
10.1002/adfm.202004410
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/441990
dc.description.abstract
Thin-film supercapacitors are promising candidates for energy storage in wearable electronics due to their mechanical flexibility, high power density, long cycling life, and fast-charging capability. In addition to all of these features, device transparency would open up completely new opportunities in wearable devices, virtual reality or in heads-up displays for vehicle navigation. Here a method is introduced for micromolding Ag/porous carbon and Ag/NixFeyOz@reduced graphene oxide (rGO) into grid-like patterns on polyethylene terephthalate foils to produce transparent thin-film supercapacitors and hybrid supercapacitors. The supercapacitor delivers a high areal capacitance of 226.8 µF cm−2 at a current density of 3 µA cm−2 and with a transparency of 70.6%. The cycling stability is preserved even after 1000 cycles under intense bending. A hybrid supercapacitor is additionally fabricated by integrating two electrodes of Ag/porous carbon and Ag/NixFeyOz@rGO. It offers an areal capacitance of 282.1 µF cm−2 at a current density of 3 µA cm−2, a transparency of 73.3% and the areal capacitance only decreases slightly under bending. This work indicates that micromolding of nano- and micro-sized powders represents a powerful method for preparing regular electrode patterns, which are fundamental for the development of transparent energy storage devices. © 2020 Wiley-VCH GmbH
en_US
dc.language.iso
en
en_US
dc.publisher
Wiley
en_US
dc.subject
flexible supercapacitors
en_US
dc.subject
micromolding
en_US
dc.subject
porous carbon
en_US
dc.subject
transparent hybrid supercapacitor
en_US
dc.subject
transparent supercapacitors
en_US
dc.title
A Micromolding Method for Transparent and Flexible Thin‐Film Supercapacitors and Hybrid Supercapacitors
en_US
dc.type
Journal Article
dc.date.published
2020-09-09
ethz.journal.title
Advanced Functional Materials
ethz.journal.volume
30
en_US
ethz.journal.issue
46
en_US
ethz.journal.abbreviated
Adv. Funct. Mater.
ethz.pages.start
2004410
en_US
ethz.size
10 p.
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Weinheim
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02020 - Dep. Chemie und Angewandte Biowiss. / Dep. of Chemistry and Applied Biosc.::02516 - Inst. f. Chemie- und Bioingenieurwiss. / Inst. Chemical and Bioengineering::03914 - deMello, Andrew / deMello, Andrew
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02020 - Dep. Chemie und Angewandte Biowiss. / Dep. of Chemistry and Applied Biosc.::02516 - Inst. f. Chemie- und Bioingenieurwiss. / Inst. Chemical and Bioengineering::03914 - deMello, Andrew / deMello, Andrew
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02160 - Dep. Materialwissenschaft / Dep. of Materials::03763 - Niederberger, Markus / Niederberger, Markus
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02020 - Dep. Chemie und Angewandte Biowiss. / Dep. of Chemistry and Applied Biosc.::02516 - Inst. f. Chemie- und Bioingenieurwiss. / Inst. Chemical and Bioengineering::03914 - deMello, Andrew / deMello, Andrew
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02020 - Dep. Chemie und Angewandte Biowiss. / Dep. of Chemistry and Applied Biosc.::02516 - Inst. f. Chemie- und Bioingenieurwiss. / Inst. Chemical and Bioengineering::03914 - deMello, Andrew / deMello, Andrew
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02160 - Dep. Materialwissenschaft / Dep. of Materials::03763 - Niederberger, Markus / Niederberger, Markus
ethz.date.deposited
2020-09-23T02:40:41Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2020-11-13T08:11:00Z
ethz.rosetta.lastUpdated
2024-02-02T12:29:19Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=A%20Micromolding%20Method%20for%20Transparent%20and%20Flexible%20Thin%E2%80%90Film%20Supercapacitors%20and%20Hybrid%20Supercapacitors&rft.jtitle=Advanced%20Functional%20Materials&rft.date=2020-11-11&rft.volume=30&rft.issue=46&rft.spage=2004410&rft.issn=1616-3028&1616-301X&rft.au=Liu,%20Tian&Yan,%20Runyu&Huang,%20Haijian&Pan,%20Long&Cao,%20Xiaobao&rft.genre=article&rft_id=info:doi/10.1002/adfm.202004410&
 Printexemplar via ETH-Bibliothek suchen

Dateien zu diesem Eintrag

DateienGrößeFormatIm Viewer öffnen

Zu diesem Eintrag gibt es keine Dateien.

Publikationstyp

Zur Kurzanzeige