Show simple item record

dc.contributor.author
Chen, Runze
dc.contributor.author
Li, Chen
dc.contributor.author
Li, Yu
dc.contributor.author
Miles, James J.
dc.contributor.author
Indiveri, Giacomo
dc.contributor.author
Furber, Steve
dc.contributor.author
Pavlidis, Vasilis F.
dc.contributor.author
Moutafis, Christoforos
dc.date.accessioned
2020-09-03T13:02:22Z
dc.date.available
2020-08-20T09:40:10Z
dc.date.available
2020-09-03T13:02:22Z
dc.date.issued
2020-07-30
dc.identifier.issn
2331-7019
dc.identifier.other
10.1103/PhysRevApplied.14.014096
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/432096
dc.description.abstract
Magnetic skyrmions have attracted considerable interest, especially after their recent experimental demonstration at room temperature in multilayers. The robustness, nanoscale size, and nonvolatility of skyrmions have triggered a substantial amount of research on skyrmion-based low-power, ultradense nanocomputing and neuromorphic systems such as artificial synapses. Room-temperature operation is required to integrate skyrmionic synapses in practical future devices. Here, we numerically propose a nanoscale skyrmionic synapse composed of magnetic multilayers that enables room-temperature device operation tailored for optimal synaptic resolution. We demonstrate that, when embedding such multilayer skyrmionic synapses in a simple spiking neural network (SNN) with unsupervised learning via the spike-timing-dependent plasticity rule, we can achieve only approximately a 78% classification accuracy in the Modified National Institute of Standards and Technology handwritten data set under realistic conditions. We propose that this performance can be significantly improved to approximately 98.61% by using a deep SNN with supervised learning. Our results illustrate that the proposed skyrmionic synapse can be a potential candidate for future energy-efficient neuromorphic edge computing.
en_US
dc.language.iso
en
en_US
dc.publisher
American Physical Society
en_US
dc.title
Nanoscale Room-Temperature Multilayer Skyrmionic Synapse for Deep Spiking Neural Networks
en_US
dc.type
Journal Article
ethz.journal.title
Physical Review Applied
ethz.journal.volume
14
en_US
ethz.journal.issue
1
en_US
ethz.journal.abbreviated
Phys. Rev. Applied
ethz.pages.start
014096
en_US
ethz.size
14 p.
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
College Park, MD
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02533 - Institut für Neuroinformatik / Institute of Neuroinformatics::09699 - Indiveri, Giacomo / Indiveri, Giacomo
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02533 - Institut für Neuroinformatik / Institute of Neuroinformatics::09699 - Indiveri, Giacomo / Indiveri, Giacomo
ethz.date.deposited
2020-08-20T09:40:15Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2020-09-03T13:02:32Z
ethz.rosetta.lastUpdated
2022-03-29T03:03:04Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Nanoscale%20Room-Temperature%20Multilayer%20Skyrmionic%20Synapse%20for%20Deep%20Spiking%20Neural%20Networks&rft.jtitle=Physical%20Review%20Applied&rft.date=2020-07-30&rft.volume=14&rft.issue=1&rft.spage=014096&rft.issn=2331-7019&rft.au=Chen,%20Runze&Li,%20Chen&Li,%20Yu&Miles,%20James%20J.&Indiveri,%20Giacomo&rft.genre=article&rft_id=info:doi/10.1103/PhysRevApplied.14.014096&
 Search print copy at ETH Library

Files in this item

FilesSizeFormatOpen in viewer

There are no files associated with this item.

Publication type

Show simple item record