Learning Dynamics for Improving Control of Overactuated Flying Systems
dc.contributor.author
Zhang, Weixuan
dc.contributor.author
Brunner, Maximilian
dc.contributor.author
Ott, Lionel
dc.contributor.author
Kamel, Mina
dc.contributor.author
Siegwart, Roland
dc.contributor.author
Nieto, Juan
dc.date.accessioned
2022-01-03T15:06:34Z
dc.date.available
2020-08-04T19:17:53Z
dc.date.available
2020-08-06T11:30:29Z
dc.date.available
2020-08-06T11:33:00Z
dc.date.available
2022-01-03T14:36:58Z
dc.date.available
2022-01-03T15:06:34Z
dc.date.issued
2020-10
dc.identifier.issn
2377-3766
dc.identifier.other
10.1109/LRA.2020.3007451
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/429969
dc.identifier.doi
10.3929/ethz-b-000429969
dc.description.abstract
Overactuated omnidirectional flying vehicles are capable of generating force and torque in any direction, which is important for applications such as contact-based industrial inspection. This comes at the price of an increase in model complexity. These vehicles usually have non-negligible, repetitive dynamics that are hard to model, such as the aerodynamic interference between the propellers. This makes it difficult for high-performance trajectory tracking using a model-based controller. This letter presents an approach that combines a data-driven and a first-principle model for the system actuation and uses it to improve the controller. In a first step, the first-principle model errors are learned offline using a Gaussian Process (GP) regressor. At runtime, the first-principle model and the GP regressor are used jointly to obtain control commands. This is formulated as an optimization problem, which avoids ambiguous solutions present in a standard inverse model in overactuated systems, by only using forward models. The approach is validated using a tilt-arm overactuated omnidirectional flying vehicle performing attitude trajectory tracking. The results show that with our proposed method, the attitude trajectory error is reduced by 32% on average as compared to a nominal PID controller. © 2020 IEEE.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
IEEE
en_US
dc.rights.uri
http://creativecommons.org/licenses/by-nc/4.0/
dc.subject
Aerial Systems: Mechanics and Control
en_US
dc.subject
Model Learning for Control
en_US
dc.title
Learning Dynamics for Improving Control of Overactuated Flying Systems
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution-NonCommercial 4.0 International
dc.date.published
2020-07-07
ethz.journal.title
IEEE Robotics and Automation Letters
ethz.journal.volume
5
en_US
ethz.journal.issue
4
en_US
ethz.pages.start
5283
en_US
ethz.pages.end
5290
en_US
ethz.size
8 p. accepted version
en_US
ethz.version.deposit
acceptedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
New York, NY
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02620 - Inst. f. Robotik u. Intelligente Systeme / Inst. Robotics and Intelligent Systems::03737 - Siegwart, Roland Y. / Siegwart, Roland Y.
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02620 - Inst. f. Robotik u. Intelligente Systeme / Inst. Robotics and Intelligent Systems::03737 - Siegwart, Roland Y. / Siegwart, Roland Y.
ethz.date.deposited
2020-08-04T19:18:03Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2020-08-06T11:30:39Z
ethz.rosetta.lastUpdated
2022-03-29T17:12:06Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Learning%20Dynamics%20for%20Improving%20Control%20of%20Overactuated%20Flying%20Systems&rft.jtitle=IEEE%20Robotics%20and%20Automation%20Letters&rft.date=2020-10&rft.volume=5&rft.issue=4&rft.spage=5283&rft.epage=5290&rft.issn=2377-3766&rft.au=Zhang,%20Weixuan&Brunner,%20Maximilian&Ott,%20Lionel&Kamel,%20Mina&Siegwart,%20Roland&rft.genre=article&rft_id=info:doi/10.1109/LRA.2020.3007451&
Files in this item
Publication type
-
Journal Article [131648]