Show simple item record

dc.contributor.author
Ugwu, Ambrose
dc.contributor.author
Donat, Felix
dc.contributor.author
Zaabout, Abdelghafour
dc.contributor.author
Müller, Christoph
dc.contributor.author
Albertsen, Knuth
dc.contributor.author
Cloete, Schalk
dc.contributor.author
van Diest, Geert
dc.contributor.author
Amini, Shahriar
dc.date.accessioned
2020-05-28T08:46:28Z
dc.date.available
2020-05-28T06:09:53Z
dc.date.available
2020-05-28T08:46:28Z
dc.date.issued
2020-06-15
dc.identifier.issn
0032-5910
dc.identifier.issn
1873-328X
dc.identifier.other
10.1016/j.powtec.2020.05.039
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/416994
dc.identifier.doi
10.3929/ethz-b-000416994
dc.description.abstract
This study demonstrates a novel “Gas Switching Water Splitting (GSWS)” technology for production of pure H2 with integrated CO2 capture. The reactor concept is based on the chemical looping technology where an oxygen carrier (metal oxide) is used to transport O2 from air to the fuel for different redox reactions. Unlike the conventional chemical looping, Gas Switching Technology inherently avoids external circulation of the oxygen carrier by alternating the oxidizing and reducing gases in a single bubbling fluidized bed reactor. This greatly simplifies reactor design leading to easier scale-up of the technology in comparison with the conventional chemical looping. The first experimental demonstration of the GSWS concept was completed at atmospheric pressure and temperatures ranging between 700 °C and 900 °C with iron-based oxygen carrier supported on alumina (~35 wt% Fe2O3 on Al2O3). Approximately 99% H2 purity was achieved at ~80% oxygen utilization. Significant fuel slippage was observed especially beyond 33% degree of reduction with some carbon deposition. The deposited carbon was able to combust/gasify completely in the subsequent air stage which makes the concept robust in sustaining oxygen carrier life. However, the gas mixing between the GSWS stages reduced the H2 purity, CO2 purity, and CO2 capture efficiency. To minimize the negative impact of gas mixing, Cu doped Mg(Fe0.9Al0.1)2O4 spinel with 74 wt% active content was developed specifically for the second experimental demonstration. Despite the high stability and reactivity under redox conditions with TGA, this oxygen carrier did not perform optimally in 5 cm ID fluidized bed reactor because of excessive agglomeration at degree of reduction beyond 34%. In general, a range of the active content between 35 and 70 wt% of the oxygen carrier was desired for optimal performance of the GSWS concept.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Elsevier
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
Gas switching
en_US
dc.subject
Hydrogen production
en_US
dc.subject
Chemical looping
en_US
dc.subject
Carbon capture
en_US
dc.subject
Zero-emission
en_US
dc.subject
Production
en_US
dc.subject
Fluidization
en_US
dc.subject
Oxygen carrier
en_US
dc.subject
Water
en_US
dc.subject
Splitting
en_US
dc.subject
Watersplitting
en_US
dc.subject
Iron
en_US
dc.subject
Natural gas
en_US
dc.subject
cGHG
en_US
dc.subject
Climate change
en_US
dc.title
Hydrogen production by water splitting using gas switching technology
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2020-05-15
ethz.journal.title
Powder Technology
ethz.journal.volume
370
en_US
ethz.journal.abbreviated
Powder technol.
ethz.pages.start
48
en_US
ethz.pages.end
63
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Amsterdam
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02668 - Inst. f. Energie- und Verfahrenstechnik / Inst. Energy and Process Engineering::03865 - Müller, Christoph R. / Müller, Christoph R.
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02668 - Inst. f. Energie- und Verfahrenstechnik / Inst. Energy and Process Engineering::03865 - Müller, Christoph R. / Müller, Christoph R.
ethz.date.deposited
2020-05-28T06:09:57Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2020-05-28T08:46:42Z
ethz.rosetta.lastUpdated
2021-02-15T11:52:38Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Hydrogen%20production%20by%20water%20splitting%20using%20gas%20switching%20technology&rft.jtitle=Powder%20Technology&rft.date=2020-06-15&rft.volume=370&rft.spage=48&rft.epage=63&rft.issn=0032-5910&1873-328X&rft.au=Ugwu,%20Ambrose&Donat,%20Felix&Zaabout,%20Abdelghafour&M%C3%BCller,%20Christoph&Albertsen,%20Knuth&rft.genre=article&rft_id=info:doi/10.1016/j.powtec.2020.05.039&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record