Show simple item record

dc.contributor.author
Cheng, Ting-Yun
dc.contributor.author
Conselice, Christopher J.
dc.contributor.author
Aragón-Salamanca, Alfonso
dc.contributor.author
Li, Nan
dc.contributor.author
Bluck, Asa F.L.
dc.contributor.author
Hartley, Will G.
dc.contributor.author
Annis, James
dc.contributor.author
Brooks, David
dc.contributor.author
Doel, Peter
dc.contributor.author
García-Bellido, Juan
dc.contributor.author
James, David J.
dc.contributor.author
Kuehn, Kyler
dc.contributor.author
Kuropatkin, Nikolay
dc.contributor.author
Smith, Mathew
dc.contributor.author
Sobreira, Flavia
dc.contributor.author
Tarle, Gregory
dc.date.accessioned
2024-05-31T15:23:57Z
dc.date.available
2020-04-29T03:05:12Z
dc.date.available
2020-04-29T06:38:48Z
dc.date.available
2024-05-31T15:23:57Z
dc.date.issued
2020-04
dc.identifier.issn
0035-8711
dc.identifier.issn
1365-2966
dc.identifier.other
10.1093/mnras/staa501
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/412178
dc.identifier.doi
10.3929/ethz-b-000412178
dc.description.abstract
There are several supervised machine learning methods used for the application of automated morphological classification of galaxies; however, there has not yet been a clear comparison of these different methods using imaging data, or an investigation for maximizing their effectiveness. We carry out a comparison between several common machine learning methods for galaxy classification [Convolutional Neural Network (CNN), K-nearest neighbour, logistic regression, Support Vector Machine, Random Forest, and Neural Networks] by using Dark Energy Survey (DES) data combined with visual classifications from the Galaxy Zoo 1 project (GZ1). Our goal is to determine the optimal machine learning methods when using imaging data for galaxy classification. We show that CNN is the most successful method of these ten methods in our study. Using a sample of ∼2800 galaxies with visual classification from GZ1, we reach an accuracy of ∼0.99 for the morphological classification of ellipticals and spirals. The further investigation of the galaxies that have a different ML and visual classification but with high predicted probabilities in our CNN usually reveals the incorrect classification provided by GZ1. We further find the galaxies having a low probability of being either spirals or ellipticals are visually lenticulars (S0), demonstrating that supervised learning is able to rediscover that this class of galaxy is distinct from both ellipticals and spirals. We confirm that ∼2.5 per cent galaxies are misclassified by GZ1 in our study. After correcting these galaxies’ labels, we improve our CNN performance to an average accuracy of over 0.99 (accuracy of 0.994 is our best result).
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Oxford University Press
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.subject
methods: data analysis
en_US
dc.subject
methods: statistical
en_US
dc.subject
galaxies: structure
en_US
dc.title
Optimizing automatic morphological classification of galaxies with machine learning and deep learning using Dark Energy Survey imaging
en_US
dc.type
Journal Article
dc.rights.license
In Copyright - Non-Commercial Use Permitted
dc.date.published
2020-02-19
ethz.journal.title
Monthly Notices of the Royal Astronomical Society
ethz.journal.volume
493
en_US
ethz.journal.issue
3
en_US
ethz.journal.abbreviated
Mon. Not. R. Astron. Soc.
ethz.pages.start
4209
en_US
ethz.pages.end
4228
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.notes
It was possible to publish this article open access thanks to a Swiss National Licence with the publisher.
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Oxford
en_US
ethz.publication.status
published
en_US
ethz.date.deposited
2020-04-29T03:05:21Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2020-04-29T06:38:59Z
ethz.rosetta.lastUpdated
2024-02-02T10:49:26Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Optimizing%20automatic%20morphological%20classification%20of%20galaxies%20with%20machine%20learning%20and%20deep%20learning%20using%20Dark%20Energy%20Survey%20imaging&rft.jtitle=Monthly%20Notices%20of%20the%20Royal%20Astronomical%20Society&rft.date=2020-04&rft.volume=493&rft.issue=3&rft.spage=4209&rft.epage=4228&rft.issn=0035-8711&1365-2966&rft.au=Cheng,%20Ting-Yun&Conselice,%20Christopher%20J.&Arag%C3%B3n-Salamanca,%20Alfonso&Li,%20Nan&Bluck,%20Asa%20F.L.&rft.genre=article&rft_id=info:doi/10.1093/mnras/staa501&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record