Show simple item record

dc.contributor.author
Mezger, Klaus
dc.contributor.author
Schönbächler, Maria
dc.contributor.author
Bouvier, Audrey
dc.date.accessioned
2020-03-20T07:18:47Z
dc.date.available
2020-03-19T02:22:51Z
dc.date.available
2020-03-20T07:18:47Z
dc.date.issued
2020
dc.identifier.issn
1572-9672
dc.identifier.issn
0038-6308
dc.identifier.other
10.1007/s11214-020-00649-y
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/405628
dc.identifier.doi
10.3929/ethz-b-000405628
dc.description.abstract
Primitive meteorites preserve the chemical and isotopic composition of the first aggregates that formed from dust and gas in the solar nebula during the earliest stages of solar system evolution. Gradual increase in the size of solid bodies from dust to aggregates and then to planetesimals finally led to the formation of planets within a few to tens of million years after the start of condensation. Thus the rocky planets of the inner solar system are likely the result of the accumulation of numerous smaller primitive as well as differentiated bodies. The chemically most primitive known meteorites are chondrites and they consist mostly of metal and silicates. Chondritic meteorites are derived from distinct primitive planetary bodies that experienced only limited element fractionation during formation and subsequent differentiation. Different chondrite classes show distinct chemical and isotopic characteristics, which may reflect heterogeneities in the solar nebula and the slightly different pathways of their formation. To a first approximation the chemical composition of the bulk Earth bears great similarities to primitive meteorites. However, for some elements there are striking and significant differences. The Earth shows a much stronger depletion of the moderate to highly volatile elements compared to chondrites. In addition, mixing trends of specific isotopes reveal that the Earth is most enriched in 𝑠��-process isotopes compared to all other analysed bulk solar system materials. It is currently not possible to fully define and quantify the different chemical and isotopic materials that formed the Earth, because a major component seems missing in the extant collections of extraterrestrial samples. Variations in nucleosynthetic isotope compositions as well as the strong depletion of moderately and strongly volatile elements points towards a source in the inner solar system for this missing material. It is conceivable that Venus and Mercury contain a much larger fraction of this missing component. Thus, for a complete reconstruction of the conditions that led to the formation of the inner solar system planets (Mercury to Mars) samples from the inner planets Venus and Mercury are of great interest and importance. High precision chemical and isotopic analyses in the laboratory of rocky material from inner solar system bodies could complete the knowledge on the chemical, isotopic and mineralogical make-up of the solar nebula just prior to planet formation and enhance our understanding of the evolution of the solar nebula in general and the formation of the rocky planets in particular.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Springer
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
Terrestrial planets
en_US
dc.subject
Accretion of Earth
en_US
dc.subject
Meteorites
en_US
dc.subject
Inner solar system
en_US
dc.title
Accretion of the Earth-Missing Components?
en_US
dc.type
Review Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2020-03-04
ethz.journal.title
Space Science Reviews
ethz.journal.volume
216
en_US
ethz.journal.issue
2
en_US
ethz.journal.abbreviated
Space Sci. Rev.
ethz.pages.start
27
en_US
ethz.size
24 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Berlin
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02330 - Dep. Erd- und Planetenwissenschaften / Dep. of Earth and Planetary Sciences::02725 - Institut für Geochemie und Petrologie / Institute of Geochemistry and Petrology::03946 - Schönbächler, Maria / Schönbächler, Maria
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02330 - Dep. Erd- und Planetenwissenschaften / Dep. of Earth and Planetary Sciences::02725 - Institut für Geochemie und Petrologie / Institute of Geochemistry and Petrology::03946 - Schönbächler, Maria / Schönbächler, Maria
ethz.date.deposited
2020-03-19T02:23:02Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2020-03-20T07:18:58Z
ethz.rosetta.lastUpdated
2021-02-15T09:11:54Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Accretion%20of%20the%20Earth-Missing%20Components?&rft.jtitle=Space%20Science%20Reviews&rft.date=2020&rft.volume=216&rft.issue=2&rft.spage=27&rft.issn=1572-9672&0038-6308&rft.au=Mezger,%20Klaus&Sch%C3%B6nb%C3%A4chler,%20Maria&Bouvier,%20Audrey&rft.genre=article&rft_id=info:doi/10.1007/s11214-020-00649-y&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record