Show simple item record

dc.contributor.author
Kassraian-Fard, Pegah
dc.contributor.author
Pfeiffer, Michael
dc.contributor.author
Bauer, Roman
dc.date.accessioned
2020-02-21T08:14:17Z
dc.date.available
2020-02-21T03:22:25Z
dc.date.available
2020-02-21T08:14:17Z
dc.date.issued
2020
dc.identifier.issn
1553-734X
dc.identifier.issn
1553-7358
dc.identifier.other
10.1371/journal.pcbi.1007315
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/400879
dc.identifier.doi
10.3929/ethz-b-000400879
dc.description.abstract
Axonal morphology displays large variability and complexity, yet the canonical regularities of the cortex suggest that such wiring is based on the repeated initiation of a small set of genetically encoded rules. Extracting underlying developmental principles can hence shed light on what genetically encoded instructions must be available during cortical development. Within a generative model, we investigate growth rules for axonal branching patterns in cat area 17, originating from the lateral geniculate nucleus of the thalamus. This target area of synaptic connections is characterized by extensive ramifications and a high bouton density, characteristics thought to preserve the spatial resolution of receptive fields and to enable connections for the ocular dominance columns. We compare individual and global statistics, such as a newly introduced length-weighted asymmetry index and the global segment-length distribution, of generated and biological branching patterns as the benchmark for growth rules. We show that the proposed model surpasses the statistical accuracy of the Galton-Watson model, which is the most commonly employed model for biological growth processes. In contrast to the Galton-Watson model, our model can recreate the log-normal segment-length distribution of the experimental dataset and is considerably more accurate in recreating individual axonal morphologies. To provide a biophysical interpretation for statistical quantifications of the axonal branching patterns, the generative model is ported into the physically accurate simulation framework of Cx3D. In this 3D simulation environment we demonstrate how the proposed growth process can be formulated as an interactive process between genetic growth rules and chemical cues in the local environment.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
PLOS
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.title
A generative growth model for thalamocortical axonal branching in primary visual cortex
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2020-02-13
ethz.journal.title
PLoS Computational Biology
ethz.journal.volume
16
en_US
ethz.journal.issue
2
en_US
ethz.journal.abbreviated
PLOS comput. biol.
ethz.pages.start
e1007315
en_US
ethz.size
23 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
San Francisco, CA
ethz.publication.status
published
en_US
ethz.date.deposited
2020-02-21T03:22:36Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2020-02-21T08:14:29Z
ethz.rosetta.lastUpdated
2024-02-02T10:28:00Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=A%20generative%20growth%20model%20for%20thalamocortical%20axonal%20branching%20in%20primary%20visual%20cortex&rft.jtitle=PLoS%20Computational%20Biology&rft.date=2020&rft.volume=16&rft.issue=2&rft.spage=e1007315&rft.issn=1553-734X&1553-7358&rft.au=Kassraian-Fard,%20Pegah&Pfeiffer,%20Michael&Bauer,%20Roman&rft.genre=article&rft_id=info:doi/10.1371/journal.pcbi.1007315&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record