Show simple item record

dc.contributor.author
Nicely, Julie M.
dc.contributor.author
Duncan, Bryan N.
dc.contributor.author
Hanisco, Thomas F.
dc.contributor.author
Wolfe, Glenn M.
dc.contributor.author
Salawitch, Ross J.
dc.contributor.author
Deushi, Makoto
dc.contributor.author
Haslerud, Amund S.
dc.contributor.author
Jöckel, Patrick
dc.contributor.author
Josse, Béatrice
dc.contributor.author
Kinnison, Douglas E.
dc.contributor.author
Klekociuk, Andrew
dc.contributor.author
Manyin, Michael E.
dc.contributor.author
Marécal, Virginie
dc.contributor.author
Morgenstern, Olaf
dc.contributor.author
Murray, Lee T.
dc.contributor.author
Myhre, Gunnar
dc.contributor.author
Oman, Luke D.
dc.contributor.author
Pitari, Giovanni
dc.contributor.author
Pozzer, Andrea
dc.contributor.author
Quaglia, Ilaria
dc.contributor.author
Revell, Laura E.
dc.contributor.author
Rozanov, Eugene
dc.contributor.author
Stenke, Andrea
dc.contributor.author
Stone, Kane
dc.contributor.author
Strahan, Susan
dc.contributor.author
Tilmes, Simone
dc.contributor.author
Tost, Holger
dc.contributor.author
Westervelt, Daniel M.
dc.contributor.author
Zeng, Guang
dc.date.accessioned
2020-02-17T09:09:01Z
dc.date.available
2020-02-15T09:24:20Z
dc.date.available
2020-02-17T09:09:01Z
dc.date.issued
2020
dc.identifier.issn
1680-7375
dc.identifier.issn
1680-7367
dc.identifier.other
10.5194/acp-20-1341-2020
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/399683
dc.identifier.doi
10.3929/ethz-b-000399683
dc.description.abstract
The hydroxyl radical (OH) plays critical roles within the troposphere, such as determining the lifetime of methane (CH4), yet is challenging to model due to its fast cycling and dependence on a multitude of sources and sinks. As a result, the reasons for variations in OH and the resulting methane lifetime (τCH4), both between models and in time, are difficult to diagnose. We apply a neural network (NN) approach to address this issue within a group of models that participated in the Chemistry-Climate Model Initiative (CCMI). Analysis of the historical specified dynamics simulations performed for CCMI indicates that the primary drivers of τCH4 differences among 10 models are the flux of UV light to the troposphere (indicated by the photolysis frequency JO1D), the mixing ratio of tropospheric ozone (O3), the abundance of nitrogen oxides (NOx≡NO+NO2), and details of the various chemical mechanisms that drive OH. Water vapour, carbon monoxide (CO), the ratio of NO:NOx, and formaldehyde (HCHO) explain moderate differences in τCH4, while isoprene, methane, the photolysis frequency of NO2 by visible light (JNO2), overhead ozone column, and temperature account for little to no model variation in τCH4. We also apply the NNs to analysis of temporal trends in OH from 1980 to 2015. All models that participated in the specified dynamics historical simulation for CCMI demonstrate a decline in τCH4 during the analysed timeframe. The significant contributors to this trend, in order of importance, are tropospheric O3, JO1D, NOx, and H2O, with CO also causing substantial interannual variability in OH burden. Finally, the identified trends in τCH4 are compared to calculated trends in the tropospheric mean OH concentration from previous work, based on analysis of observations. The comparison reveals a robust result for the effect of rising water vapour on OH and τCH4, imparting an increasing and decreasing trend of about 0.5 % decade−1, respectively. The responses due to NOx, ozone column, and temperature are also in reasonably good agreement between the two studies.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Copernicus
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.title
A machine learning examination of hydroxyl radical differences among model simulations for CCMI-1
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2020-02-05
ethz.journal.title
Atmospheric Chemistry and Physics
ethz.journal.volume
20
en_US
ethz.journal.issue
3
en_US
ethz.journal.abbreviated
Atmos. chem. phys.
ethz.pages.start
1341
en_US
ethz.pages.end
1361
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.scopus
ethz.publication.place
Göttingen
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02350 - Dep. Umweltsystemwissenschaften / Dep. of Environmental Systems Science::02717 - Institut für Atmosphäre und Klima / Inst. Atmospheric and Climate Science::03517 - Peter, Thomas (emeritus) / Peter, Thomas (emeritus)
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02350 - Dep. Umweltsystemwissenschaften / Dep. of Environmental Systems Science::02717 - Institut für Atmosphäre und Klima / Inst. Atmospheric and Climate Science::03517 - Peter, Thomas (emeritus) / Peter, Thomas (emeritus)
ethz.date.deposited
2020-02-15T09:24:31Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2020-02-17T09:09:13Z
ethz.rosetta.lastUpdated
2024-02-02T10:25:53Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=A%20machine%20learning%20examination%20of%20hydroxyl%20radical%20differences%20among%20model%20simulations%20for%20CCMI-1&rft.jtitle=Atmospheric%20Chemistry%20and%20Physics&rft.date=2020&rft.volume=20&rft.issue=3&rft.spage=1341&rft.epage=1361&rft.issn=1680-7375&1680-7367&rft.au=Nicely,%20Julie%20M.&Duncan,%20Bryan%20N.&Hanisco,%20Thomas%20F.&Wolfe,%20Glenn%20M.&Salawitch,%20Ross%20J.&rft.genre=article&rft_id=info:doi/10.5194/acp-20-1341-2020&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record