Safe Robot Navigation via Multi-Modal Anomaly Detection
dc.contributor.author
Wellhausen, Lorenz
dc.contributor.author
Ranftl, René
dc.contributor.author
Hutter, Marco
dc.date.accessioned
2020-02-12T11:59:46Z
dc.date.available
2020-01-22T09:20:14Z
dc.date.available
2020-01-22T09:38:50Z
dc.date.available
2020-02-12T11:59:46Z
dc.date.issued
2020-04
dc.identifier.issn
2377-3766
dc.identifier.other
10.1109/lra.2020.2967706
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/392927
dc.identifier.doi
10.3929/ethz-b-000392927
dc.description.abstract
Navigation in natural outdoor environments requires a robust and reliable traversability classification method to handle the plethora of situations a robot can encounter. Binary classification algorithms perform well in their native domain but tend to provide overconfident predictions when presented with out-of-distribution samples, which can lead to catastrophic failure when navigating unknown environments. We propose to overcome this issue by using anomaly detection on multi-modal images for traversability classification, which is easily scalable by training in a self-supervised fashion from robot experience. In this work, we evaluate multiple anomaly detection methods with a combination of uni- and multi-modal images in their performance on data from different environmental conditions. Our results show that an approach using a feature extractor and normalizing flow with an input of RGB, depth and surface normals performs best. It achieves over 95% area under the ROC curve and is robust to out-of-distribution samples.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
IEEE
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.subject
Visual-Based Navigation
en_US
dc.subject
Visual Learning
en_US
dc.subject
RGB-D Perception
en_US
dc.subject
AI-Based Methods
en_US
dc.title
Safe Robot Navigation via Multi-Modal Anomaly Detection
en_US
dc.type
Journal Article
dc.rights.license
In Copyright - Non-Commercial Use Permitted
dc.date.published
2020-01-20
ethz.journal.title
IEEE Robotics and Automation Letters
ethz.journal.volume
5
en_US
ethz.journal.issue
2
en_US
ethz.pages.start
1326
en_US
ethz.pages.end
1333
en_US
ethz.size
8 p. accepted version
en_US
ethz.version.deposit
acceptedVersion
en_US
ethz.grant
subTerranean Haptic INvestiGator
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Piscataway, NJ
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02620 - Inst. f. Robotik u. Intelligente Systeme / Inst. Robotics and Intelligent Systems::09570 - Hutter, Marco / Hutter, Marco
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02620 - Inst. f. Robotik u. Intelligente Systeme / Inst. Robotics and Intelligent Systems::09570 - Hutter, Marco / Hutter, Marco
en_US
ethz.tag
RSL
en_US
ethz.grant.agreementno
780883
ethz.grant.fundername
EC
ethz.grant.funderDoi
10.13039/501100000780
ethz.grant.program
H2020
ethz.relation.isSupplementedBy
10.3929/ethz-b-000389950
ethz.date.deposited
2020-01-22T09:20:22Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2020-02-12T12:00:11Z
ethz.rosetta.lastUpdated
2021-02-15T08:00:28Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Safe%20Robot%20Navigation%20via%20Multi-Modal%20Anomaly%20Detection&rft.jtitle=IEEE%20Robotics%20and%20Automation%20Letters&rft.date=2020-04&rft.volume=5&rft.issue=2&rft.spage=1326&rft.epage=1333&rft.issn=2377-3766&rft.au=Wellhausen,%20Lorenz&Ranftl,%20Ren%C3%A9&Hutter,%20Marco&rft.genre=article&rft_id=info:doi/10.1109/lra.2020.2967706&
Files in this item
Publication type
-
Journal Article [131376]