Detecting Path Anomalies in Time Series Data on Networks
dc.contributor.author
LaRock, Timothy
dc.contributor.author
Nanumyan, Vahan
dc.contributor.author
Scholtes, Ingo
dc.contributor.author
Casiraghi, Giona
dc.contributor.author
Eliassi-Rad, Tina
dc.contributor.author
Schweitzer, Frank
dc.date.accessioned
2020-01-20T12:06:49Z
dc.date.available
2020-01-17T14:41:30Z
dc.date.available
2020-01-20T11:51:29Z
dc.date.available
2020-01-20T12:06:49Z
dc.date.issued
2019-05-25
dc.identifier.uri
http://hdl.handle.net/20.500.11850/391569
dc.description.abstract
The unsupervised detection of anomalies in time series data has important applications, e.g., in user behavioural modelling, fraud detection, and cybersecurity. Anomaly detection has been extensively studied in categorical sequences, however we often have access to time series data that contain paths through networks. Examples include transaction sequences in financial networks, click streams of users in networks of cross-referenced documents, or travel itineraries in transportation networks. To reliably detect anomalies we must account for the fact that such data contain a large number of independent observations of short paths constrained by a graph topology. Moreover, the heterogeneity of real systems rules out frequency-based anomaly detection techniques, which do not account for highly skewed edge and degree statistics. To address this problem we introduce a novel framework for the unsupervised detection of anomalies in large corpora of variable-length temporal paths in a graph, which provides an efficient analytical method to detect paths with anomalous frequencies th at result from nodes being traversed in unexpected chronological order.
en_US
dc.language.iso
en
en_US
dc.publisher
Cornell University
en_US
dc.title
Detecting Path Anomalies in Time Series Data on Networks
en_US
dc.type
Working Paper
ethz.journal.title
arXiv
ethz.pages.start
1905.10580
en_US
ethz.size
14 p.
en_US
ethz.identifier.arxiv
1905.10580
ethz.publication.place
Ithaca, NY
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02120 - Dep. Management, Technologie und Ökon. / Dep. of Management, Technology, and Ec.::03682 - Schweitzer, Frank / Schweitzer, Frank
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02120 - Dep. Management, Technologie und Ökon. / Dep. of Management, Technology, and Ec.::03682 - Schweitzer, Frank / Schweitzer, Frank
ethz.identifier.orcidWorkCode
67472457
ethz.relation.isPreviousVersionOf
handle/20.500.11850/459322
ethz.date.deposited
2020-01-17T14:41:38Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2020-01-20T11:51:41Z
ethz.rosetta.lastUpdated
2024-02-02T10:10:57Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Detecting%20Path%20Anomalies%20in%20Time%20Series%20Data%20on%20Networks&rft.jtitle=arXiv&rft.date=2019-05-25&rft.spage=1905.10580&rft.au=LaRock,%20Timothy&Nanumyan,%20Vahan&Scholtes,%20Ingo&Casiraghi,%20Giona&Eliassi-Rad,%20Tina&rft.genre=preprint&
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Working Paper [5743]