Abstract
The unsupervised detection of anomalies in time series data has important applications, e.g., in user behavioural modelling, fraud detection, and cybersecurity. Anomaly detection has been extensively studied in categorical sequences, however we often have access to time series data that contain paths through networks. Examples include transaction sequences in financial networks, click streams of users in networks of cross-referenced documents, or travel itineraries in transportation networks. To reliably detect anomalies we must account for the fact that such data contain a large number of independent observations of short paths constrained by a graph topology. Moreover, the heterogeneity of real systems rules out frequency-based anomaly detection techniques, which do not account for highly skewed edge and degree statistics. To address this problem we introduce a novel framework for the unsupervised detection of anomalies in large corpora of variable-length temporal paths in a graph, which provides an efficient analytical method to detect paths with anomalous frequencies th at result from nodes being traversed in unexpected chronological order. Show more
Publication status
publishedExternal links
Journal / series
arXivPages / Article No.
Publisher
Cornell UniversityOrganisational unit
03682 - Schweitzer, Frank / Schweitzer, Frank
Related publications and datasets
Is previous version of: http://hdl.handle.net/20.500.11850/459322
More
Show all metadata
ETH Bibliography
yes
Altmetrics