Structuring Hydrogel Surfaces for Tribology
dc.contributor.author
Gombert, Yvonne
dc.contributor.author
Simič, Rok
dc.contributor.author
Roncoroni, Fabrice
dc.contributor.author
Dübner, Matthias
dc.contributor.author
Geue, Thomas
dc.contributor.author
Spencer, Nicholas D.
dc.date.accessioned
2019-12-02T10:07:10Z
dc.date.available
2019-12-02T03:40:47Z
dc.date.available
2019-12-02T10:07:10Z
dc.date.issued
2019-11-22
dc.identifier.issn
2196-7350
dc.identifier.other
10.1002/admi.201901320
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/381782
dc.identifier.doi
10.3929/ethz-b-000381782
dc.description.abstract
Hydrogels are often used as model systems for articular cartilage due to similarities in their tribological properties. However, neither the structures nor the friction mechanisms of either system are fully understood. A key aspect of hydrogel lubrication is the nature of the polymeric structure at the surface, and the lubricating water film. A combination of neutron reflectometry and infrared spectroscopy is used to probe polymer volume fraction from the interface into the bulk hydrogel and its dependence on the molding material. The depth dependence of the polymer‐network density influences the compressibility of the hydrogel surfaces, as demonstrated by both atomic force microscopy (AFM)‐ and micro indentation. By changing molding materials, substantial differences in the gradient of polymer‐network density are observed with depth. The lower the volume fraction of polymer at the hydrogel surface, the more water it can maintain at its interface as a substantial water film that is stable even under static conditions. Such films render the hydrogel highly lubricious, with a speed‐independent friction coefficient of μ = 0.01, measured in gemini contact. This result provides experimental evidence that the presence of these highly lubricious water films is strongly dependent on the polymer‐network structure at the surface.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Wiley
en_US
dc.rights.uri
http://creativecommons.org/licenses/by-nc/4.0/
dc.subject
Hydrogels
en_US
dc.subject
Lubrication
en_US
dc.subject
Polymer volume fraction
en_US
dc.subject
Substrate effects
en_US
dc.subject
Surface structures
en_US
dc.title
Structuring Hydrogel Surfaces for Tribology
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution-NonCommercial 4.0 International
dc.date.published
2019-10-14
ethz.journal.title
Advanced Materials Interfaces
ethz.journal.volume
6
en_US
ethz.journal.issue
22
en_US
ethz.journal.abbreviated
Adv. Mater. Interfaces
ethz.pages.start
1901320
en_US
ethz.size
9 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.grant
Polymer Analogs to Biolubrication Systems: Novel materials for exploring cartilage tribology and exploiting its mechanisms
en_US
ethz.identifier.scopus
ethz.publication.place
Weinheim
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02160 - Dep. Materialwissenschaft / Dep. of Materials::02646 - Institut für Polymere / Institute of Polymers::03389 - Spencer, Nicholas (emeritus) / Spencer, Nicholas (emeritus)
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02160 - Dep. Materialwissenschaft / Dep. of Materials::02646 - Institut für Polymere / Institute of Polymers::03389 - Spencer, Nicholas (emeritus) / Spencer, Nicholas (emeritus)
ethz.grant.agreementno
669562
ethz.grant.fundername
EC
ethz.grant.funderDoi
10.13039/501100000780
ethz.grant.program
H2020
ethz.date.deposited
2019-12-02T03:40:52Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2019-12-02T10:07:24Z
ethz.rosetta.lastUpdated
2024-02-02T09:56:03Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Structuring%20Hydrogel%20Surfaces%20for%20Tribology&rft.jtitle=Advanced%20Materials%20Interfaces&rft.date=2019-11-22&rft.volume=6&rft.issue=22&rft.spage=1901320&rft.issn=2196-7350&rft.au=Gombert,%20Yvonne&Simi%C4%8D,%20Rok&Roncoroni,%20Fabrice&D%C3%BCbner,%20Matthias&Geue,%20Thomas&rft.genre=article&rft_id=info:doi/10.1002/admi.201901320&
Files in this item
Publication type
-
Journal Article [131862]