Show simple item record

dc.contributor.author
Huang, Haijian
dc.contributor.author
Niederberger, Markus
dc.date.accessioned
2019-10-29T08:48:42Z
dc.date.available
2019-10-28T16:17:45Z
dc.date.available
2019-10-29T08:47:59Z
dc.date.available
2019-10-29T08:48:42Z
dc.date.issued
2019-11-07
dc.identifier.issn
2040-3364
dc.identifier.issn
2040-3372
dc.identifier.other
10.1039/C9NR05732C
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/373418
dc.identifier.doi
10.3929/ethz-b-000373418
dc.description.abstract
Since the discovery of the pseudocapacitive behavior in RuO2 by Sergio Trasatti and Giovanni Buzzanca in 1971, materials with pseudocapacitance have been regarded as promising candidates for high-power energy storage. Pseudocapacitance-involving energy storage is predominantly based on faradaic redox reactions, but at the same time the charge storage is not limited by solid-state ion diffusion. Besides the search for pseudocapacitive materials, their implementation into non-aqueous hybrid capacitors stands for the strategy to increase power density by a rational design of the battery structure. Composed of a battery-type anode and a capacitor-type cathode, such devices show great promise to integrate the merits of both batteries and capacitors. Today, the availability of fast-charging technologies is of fundamental importance for establishing electric vehicles on a mass scale. Therefore, from the perspective of materials and battery design, understanding the basics and the recent developments of pseudocapacitive materials and non-aqueous hybrid capacitors is of great importance. With this goal in mind, we introduce here the fundamentals of pseudocapacitance and non-aqueous hybrid capacitors. In addition, we provide an overview of the latest developments in this fast growing research field.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Royal Society of Chemistry
en_US
dc.rights.uri
http://creativecommons.org/licenses/by-nc/3.0/
dc.title
Towards fast-charging technologies in Li+/Na+ storage: from the perspectives of pseudocapacitive materials and non-aqueous hybrid capacitors
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution-NonCommercial 3.0 Unported
dc.date.published
2019-09-18
ethz.journal.title
Nanoscale
ethz.journal.volume
11
en_US
ethz.journal.issue
41
en_US
ethz.pages.start
19225
en_US
ethz.pages.end
19240
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Cambridge
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02160 - Dep. Materialwissenschaft / Dep. of Materials::03763 - Niederberger, Markus / Niederberger, Markus
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02160 - Dep. Materialwissenschaft / Dep. of Materials::03763 - Niederberger, Markus / Niederberger, Markus
en_US
ethz.identifier.orcidWorkCode
61748299
ethz.date.deposited
2019-10-28T16:17:54Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2019-10-29T08:48:12Z
ethz.rosetta.lastUpdated
2022-03-28T23:58:50Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Towards%20fast-charging%20technologies%20in%20Li+/Na+%20storage:%20from%20the%20perspectives%20of%20pseudocapacitive%20materials%20and%20non-aqueous%20hybrid%20capacitor&rft.jtitle=Nanoscale&rft.date=2019-11-07&rft.volume=11&rft.issue=41&rft.spage=19225&rft.epage=19240&rft.issn=2040-3364&2040-3372&rft.au=Huang,%20Haijian&Niederberger,%20Markus&rft.genre=article&rft_id=info:doi/10.1039/C9NR05732C&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record