Laser-sculptured ultrathin transition metal carbide layers for energy storage and energy harvesting applications
dc.contributor.author
Zang, Xining
dc.contributor.author
Jian, Cuiying
dc.contributor.author
Zhu, Taishan
dc.contributor.author
Fan, Zheng
dc.contributor.author
Wang, Wanlin
dc.contributor.author
Wei, Minsong
dc.contributor.author
Li, Buxuan
dc.contributor.author
Diaz, Mateo Follmar
dc.contributor.author
Ashby, Paul
dc.contributor.author
Lu, Zhengmao
dc.contributor.author
Chu, Yao
dc.contributor.author
Wang, Zizhao
dc.contributor.author
Ding, Xinrui
dc.contributor.author
Xie, Yingxi
dc.contributor.author
Chen, Juhong
dc.contributor.author
Hohman, J. Nathan
dc.contributor.author
Sanghadasa, Mohan
dc.contributor.author
Grossman, Jeffrey C.
dc.contributor.author
Lin, Liwei
dc.date.accessioned
2019-07-29T11:46:42Z
dc.date.available
2019-07-26T08:39:52Z
dc.date.available
2019-07-29T11:46:42Z
dc.date.issued
2019-07-15
dc.identifier.issn
2041-1723
dc.identifier.other
10.1038/s41467-019-10999-z
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/355321
dc.identifier.doi
10.3929/ethz-b-000355321
dc.description.abstract
Ultrathin transition metal carbides with high capacity, high surface area, and high conductivity are a promising family of materials for applications from energy storage to catalysis. However, large-scale, cost-effective, and precursor-free methods to prepare ultrathin carbides are lacking. Here, we demonstrate a direct pattern method to manufacture ultrathin carbides (MoCx, WCx, and CoCx) on versatile substrates using a CO2 laser. The laser-sculptured polycrystalline carbides (macroporous, ~10–20 nm wall thickness, ~10 nm crystallinity) show high energy storage capability, hierarchical porous structure, and higher thermal resilience than MXenes and other laser-ablated carbon materials. A flexible supercapacitor made of MoCx demonstrates a wide temperature range (−50 to 300 °C). Furthermore, the sculptured microstructures endow the carbide network with enhanced visible light absorption, providing high solar energy harvesting efficiency (~72 %) for steam generation. The laser-based, scalable, resilient, and low-cost manufacturing process presents an approach for construction of carbides and their subsequent applications.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Nature
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.title
Laser-sculptured ultrathin transition metal carbide layers for energy storage and energy harvesting applications
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
ethz.journal.title
Nature Communications
ethz.journal.volume
10
en_US
ethz.journal.abbreviated
Nat Commun
ethz.pages.start
3112
en_US
ethz.size
8 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
London
ethz.publication.status
published
en_US
ethz.date.deposited
2019-07-26T08:39:56Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2019-07-29T11:46:52Z
ethz.rosetta.lastUpdated
2024-02-02T08:34:50Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Laser-sculptured%20ultrathin%20transition%20metal%20carbide%20layers%20for%20energy%20storage%20and%20energy%20harvesting%20applications&rft.jtitle=Nature%20Communications&rft.date=2019-07-15&rft.volume=10&rft.spage=3112&rft.issn=2041-1723&rft.au=Zang,%20Xining&Jian,%20Cuiying&Zhu,%20Taishan&Fan,%20Zheng&Wang,%20Wanlin&rft.genre=article&rft_id=info:doi/10.1038/s41467-019-10999-z&
Files in this item
Publication type
-
Journal Article [131718]