Show simple item record

dc.contributor.author
Cardner, Mathias
dc.contributor.author
Meyer-Schaller, Nathalie
dc.contributor.author
Christofori, Gerhard
dc.contributor.author
Beerenwinkel, Niko
dc.date.accessioned
2019-08-08T06:17:12Z
dc.date.available
2019-07-21T02:30:06Z
dc.date.available
2019-07-31T15:22:47Z
dc.date.available
2019-08-08T06:17:12Z
dc.date.issued
2019-07
dc.identifier.issn
1367-4803
dc.identifier.issn
1460-2059
dc.identifier.other
10.1093/bioinformatics/btz325
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/354244
dc.identifier.doi
10.3929/ethz-b-000354244
dc.description.abstract
Motivation In order to infer a cell signalling network, we generally need interventional data from perturbation experiments. If the perturbation experiments are time-resolved, then signal progression through the network can be inferred. However, such designs are infeasible for large signalling networks, where it is more common to have steady-state perturbation data on the one hand, and a non-interventional time series on the other. Such was the design in a recent experiment investigating the coordination of epithelial–mesenchymal transition (EMT) in murine mammary gland cells. We aimed to infer the underlying signalling network of transcription factors and microRNAs coordinating EMT, as well as the signal progression during EMT. Results In the context of nested effects models, we developed a method for integrating perturbation data with a non-interventional time series. We applied the model to RNA sequencing data obtained from an EMT experiment. Part of the network inferred from RNA interference was validated experimentally using luciferase reporter assays. Our model extension is formulated as an integer linear programme, which can be solved efficiently using heuristic algorithms. This extension allowed us to infer the signal progression through the network during an EMT time course, and thereby assess when each regulator is necessary for EMT to advance.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Oxford University Press
en_US
dc.rights.uri
http://creativecommons.org/licenses/by-nc/4.0/
dc.title
Inferring signalling dynamics by integrating interventional with observational data
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution-NonCommercial 4.0 International
dc.date.published
2019-07-05
ethz.journal.title
Bioinformatics
ethz.journal.volume
35
en_US
ethz.journal.issue
14
en_US
ethz.journal.abbreviated
Bioinformatics
ethz.pages.start
i577
en_US
ethz.pages.end
i585
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.scopus
ethz.publication.place
Oxford
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02060 - Dep. Biosysteme / Dep. of Biosystems Science and Eng.::03790 - Beerenwinkel, Niko / Beerenwinkel, Niko
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02060 - Dep. Biosysteme / Dep. of Biosystems Science and Eng.::03790 - Beerenwinkel, Niko / Beerenwinkel, Niko
ethz.date.deposited
2019-07-21T02:30:13Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2019-07-31T15:22:57Z
ethz.rosetta.lastUpdated
2021-02-15T05:31:00Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Inferring%20signalling%20dynamics%20by%20integrating%20interventional%20with%20observational%20data&rft.jtitle=Bioinformatics&rft.date=2019-07&rft.volume=35&rft.issue=14&rft.spage=i577&rft.epage=i585&rft.issn=1367-4803&1460-2059&rft.au=Cardner,%20Mathias&Meyer-Schaller,%20Nathalie&Christofori,%20Gerhard&Beerenwinkel,%20Niko&rft.genre=article&rft_id=info:doi/10.1093/bioinformatics/btz325&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record