Show simple item record

dc.contributor.author
Venetz, Jonathan E.
dc.contributor.author
Del Medico, Luca
dc.contributor.author
Wölfle, Alexander
dc.contributor.author
Schächle, Philipp
dc.contributor.author
Bucher, Yves
dc.contributor.author
Appert, Donat
dc.contributor.author
Tschan, Flavia
dc.contributor.author
Flores-Tinoco, Carlos E.
dc.contributor.author
Van Kooten, Mariëlle
dc.contributor.author
Guennoun, Rym
dc.contributor.author
Deutsch, Samuel
dc.contributor.author
Christen, Matthias
dc.contributor.author
Christen, Beat
dc.date.accessioned
2019-04-29T08:11:17Z
dc.date.available
2019-04-26T13:35:52Z
dc.date.available
2019-04-29T08:11:17Z
dc.date.issued
2019-04-16
dc.identifier.issn
0027-8424
dc.identifier.issn
1091-6490
dc.identifier.other
10.1073/pnas.1818259116
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/339772
dc.identifier.doi
10.3929/ethz-b-000339772
dc.description.abstract
Understanding how to program biological functions into artificial DNA sequences remains a key challenge in synthetic genomics. Here, we report the chemical synthesis and testing of Caulobacter ethensis-2.0 (C. eth-2.0), a rewritten bacterial genome composed of the most fundamental functions of a bacterial cell. We rebuilt the essential genome of Caulobacter crescentus through the process of chemical synthesis rewriting and studied the genetic information content at the level of its essential genes. Within the 785,701-bp genome, we used sequence rewriting to reduce the number of encoded genetic features from 6,290 to 799. Overall, we introduced 133,313 base substitutions, resulting in the rewriting of 123,562 codons. We tested the biological functionality of the genome design in C. crescentus by transposon mutagenesis. Our analysis revealed that 432 essential genes of C. eth-2.0, corresponding to 81.5% of the design, are equal in functionality to natural genes. These findings suggest that neither changing mRNA structure nor changing the codon context have significant influence on biological functionality of synthetic genomes. Discovery of 98 genes that lost their function identified essential genes with incorrect annotation, including a limited set of 27 genes where we uncovered noncoding control features embedded within protein-coding sequences. In sum, our results highlight the promise of chemical synthesis rewriting to decode fundamental genome functions and its utility toward the design of improved organisms for industrial purposes and health benefits.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
National Academy of Sciences
en_US
dc.rights.uri
http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject
Caulobacter crescentus
en_US
dc.subject
chemical genome synthesis
en_US
dc.subject
genome rewriting
en_US
dc.subject
synonymous recoding
en_US
dc.subject
de novo DNA synthesis
en_US
dc.title
Chemical synthesis rewriting of a bacterial genome to achieve design flexibility and biological functionality
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
dc.date.published
2019-04-01
ethz.journal.title
Proceedings of the National Academy of Sciences of the United States of America
ethz.journal.volume
116
en_US
ethz.journal.issue
16
en_US
ethz.journal.abbreviated
Proc Natl Acad Sci U S A
ethz.pages.start
8070
en_US
ethz.pages.end
8079
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.grant
Global identification and characterization of essential genome features by random transposon mutagenesis
en_US
ethz.identifier.scopus
ethz.publication.place
Washington, DC
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02030 - Dep. Biologie / Dep. of Biology::02538 - Institut für Molekulare Systembiologie / Institute for Molecular Systems Biology::09461 - Christen, Beat (ehemalig) / Christen, Beat (former)
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02030 - Dep. Biologie / Dep. of Biology::02538 - Institut für Molekulare Systembiologie / Institute for Molecular Systems Biology::09461 - Christen, Beat (ehemalig) / Christen, Beat (former)
ethz.grant.agreementno
166476
ethz.grant.fundername
SNF
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.program
Projekte Lebenswissenschaften
ethz.relation.isPartOf
10.3929/ethz-b-000470661
ethz.date.deposited
2019-04-26T13:35:53Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2019-04-29T08:11:26Z
ethz.rosetta.lastUpdated
2022-03-28T22:51:27Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Chemical%20synthesis%20rewriting%20of%20a%20bacterial%20genome%20to%20achieve%20design%20flexibility%20and%20biological%20functionality&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20of%20the%20United%20States%20of%20America&rft.date=2019-04-16&rft.volume=116&rft.issue=16&rft.spage=8070&rft.epage=8079&rft.issn=0027-8424&1091-6490&rft.au=Venetz,%20Jonathan%20E.&Del%20Medico,%20Luca&W%C3%B6lfle,%20Alexander&Sch%C3%A4chle,%20Philipp&Bucher,%20Yves&rft.genre=article&rft_id=info:doi/10.1073/pnas.1818259116&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record