Show simple item record

dc.contributor.author
Flühmann, Christa
dc.contributor.author
Nguyen, Thanh Long
dc.contributor.author
Marinelli, Matteo
dc.contributor.author
Negnevitsky, Vlad
dc.contributor.author
Mehta, Karan K.
dc.contributor.author
Home, Jonathan
dc.date.accessioned
2024-06-12T14:02:14Z
dc.date.available
2019-02-28T08:19:50Z
dc.date.available
2019-03-05T16:46:47Z
dc.date.available
2024-06-12T14:02:14Z
dc.date.issued
2019-02-28
dc.identifier.issn
0028-0836
dc.identifier.issn
1476-4687
dc.identifier.other
10.1038/s41586-019-0960-6
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/328185
dc.identifier.doi
10.3929/ethz-b-000328185
dc.description.abstract
The stable operation of quantum computers will rely on error correction, in which single quantum bits of information are stored redundantly in the Hilbert space of a larger system. Such encoded qubits are commonly based on arrays of many physical qubits, but can also be realized using a single higher-dimensional quantum system, such as a harmonic oscillator. In such a system, a powerful encoding has been devised based on periodically spaced superpositions of position eigenstates. Various proposals have been made for realizing approximations to such states, but these have thus far remained out of reach. Here we demonstrate such an encoded qubit using a superposition of displaced squeezed states of the harmonic motion of a single trapped ⁴⁰Ca+ ion, controlling and measuring the mechanical oscillator through coupling to an ancillary internal-state qubit. We prepare and reconstruct logical states with an average squared fidelity of 87.3 ± 0.7 per cent. Also, we demonstrate a universal logical single-qubit gate set, which we analyse using process tomography. For Pauli gates we reach process fidelities of about 97 per cent, whereas for continuous rotations we use gate teleportation and achieve fidelities of approximately 89 per cent. This control method opens a route for exploring continuous variable error correction as well as hybrid quantum information schemes using both discrete and continuous variables. The code states also have direct applications in quantum sensing, allowing simultaneous measurement of small displacements in both position and momentum.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Nature
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.title
Encoding a qubit in a trapped-ion mechanical oscillator
en_US
dc.type
Journal Article
dc.rights.license
In Copyright - Non-Commercial Use Permitted
dc.date.published
2019-02-27
ethz.journal.title
Nature
ethz.journal.volume
566
en_US
ethz.journal.issue
7745
en_US
ethz.pages.start
513
en_US
ethz.pages.end
517
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.notes
It was possible to publish this article open access thanks to a Swiss National Licence with the publisher.
en_US
ethz.grant
Multi-qubit transport gates and integrated control for scalable ion trap quantum processing
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
London
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02010 - Dep. Physik / Dep. of Physics::02510 - Institut für Quantenelektronik / Institute for Quantum Electronics::03892 - Home, Jonathan / Home, Jonathan
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02010 - Dep. Physik / Dep. of Physics::02510 - Institut für Quantenelektronik / Institute for Quantum Electronics::03892 - Home, Jonathan / Home, Jonathan
en_US
ethz.grant.agreementno
165555
ethz.grant.fundername
SNF
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.program
Projekte MINT
ethz.date.deposited
2019-02-28T08:19:52Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2019-03-05T16:46:55Z
ethz.rosetta.lastUpdated
2024-02-02T07:16:33Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Encoding%20a%20qubit%20in%20a%20trapped-ion%20mechanical%20oscillator&rft.jtitle=Nature&rft.date=2019-02-28&rft.volume=566&rft.issue=7745&rft.spage=513&rft.epage=517&rft.issn=0028-0836&1476-4687&rft.au=Fl%C3%BChmann,%20Christa&Nguyen,%20Thanh%20Long&Marinelli,%20Matteo&Negnevitsky,%20Vlad&Mehta,%20Karan%20K.&rft.genre=article&rft_id=info:doi/10.1038/s41586-019-0960-6&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record