Zur Kurzanzeige

dc.contributor.author
Albani, Marco
dc.contributor.author
Marzegalli, Anna
dc.contributor.author
Bergamaschini, Roberto
dc.contributor.author
Mauceri, Marco
dc.contributor.author
Crippa, Danilo
dc.contributor.author
La Via, Francesco
dc.contributor.author
von Känel, Hans
dc.contributor.author
Miglio, Leo
dc.date.accessioned
2019-07-26T11:21:28Z
dc.date.available
2018-05-26T04:35:05Z
dc.date.available
2018-05-30T11:36:21Z
dc.date.available
2018-05-30T11:37:13Z
dc.date.available
2019-07-26T11:21:28Z
dc.date.issued
2018-05
dc.identifier.issn
0021-8979
dc.identifier.issn
1089-7550
dc.identifier.other
10.1063/1.5019325
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/266080
dc.identifier.doi
10.3929/ethz-b-000266080
dc.description.abstract
The exceptionally large thermal strain in few-micrometers-thick 3C-SiC films on Si(111), causing severe wafer bending and cracking, is demonstrated to be elastically quenched by substrate patterning in finite arrays of Si micro-pillars, sufficiently large in aspect ratio to allow for lateral pillar tilting, both by simulations and by preliminary experiments. In suspended SiC patches, the mechanical problem is addressed by finite element method: both the strain relaxation and the wafer curvature are calculated at different pillar height, array size, and film thickness. Patches as large as required by power electronic devices (500–1000 μm in size) show a remarkable residual strain in the central area, unless the pillar aspect ratio is made sufficiently large to allow peripheral pillars to accommodate the full film retraction. A sublinear relationship between the pillar aspect ratio and the patch size, guaranteeing a minimal curvature radius, as required for wafer processing and micro-crack prevention, is shown to be valid for any heteroepitaxial system.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
American Institute of Physics
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.title
Solving the critical thermal bowing in 3C-SiC/Si(111) by a titling Si pillar architecture
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2018-05-09
ethz.journal.title
Journal of Applied Physics
ethz.journal.volume
123
en_US
ethz.journal.issue
18
en_US
ethz.journal.abbreviated
J. Appl. Physi.
ethz.pages.start
185703
en_US
ethz.size
9 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Melville, NY
en_US
ethz.publication.status
published
en_US
ethz.date.deposited
2018-05-26T04:35:57Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2018-05-30T11:36:29Z
ethz.rosetta.lastUpdated
2021-02-15T05:23:06Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Solving%20the%20critical%20thermal%20bowing%20in%203C-SiC/Si(111)%20by%20a%20titling%20Si%20pillar%20architecture&rft.jtitle=Journal%20of%20Applied%20Physics&rft.date=2018-05&rft.volume=123&rft.issue=18&rft.spage=185703&rft.issn=0021-8979&1089-7550&rft.au=Albani,%20Marco&Marzegalli,%20Anna&Bergamaschini,%20Roberto&Mauceri,%20Marco&Crippa,%20Danilo&rft.genre=article&rft_id=info:doi/10.1063/1.5019325&
 Printexemplar via ETH-Bibliothek suchen

Dateien zu diesem Eintrag

Thumbnail

Publikationstyp

Zur Kurzanzeige