A Data-Driven Stochastic Optimization Approach to the Seasonal Storage Energy Management
dc.contributor.author
Darivianakis, Georgios
dc.contributor.author
Eichler, Annika
dc.contributor.author
Smith, Roy
dc.contributor.author
Lygeros, John
dc.date.accessioned
2021-03-29T04:26:52Z
dc.date.available
2018-01-22T08:48:35Z
dc.date.available
2018-01-24T16:33:35Z
dc.date.available
2021-03-28T14:09:30Z
dc.date.available
2021-03-29T04:26:52Z
dc.date.issued
2017-10
dc.identifier.issn
2475-1456
dc.identifier.other
10.1109/LCSYS.2017.2714426
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/231975
dc.identifier.doi
10.3929/ethz-b-000231975
dc.description.abstract
Several studies in the literature have shown the potential energy savings emerging from the cooperative management of the aggregated building energy demands. Sophisticated predictive control schemes have recently been developed that achieve these gains by exploiting the energy generation, conversion and storage equipment shared by the building community. A common difficulty with all these methods is integrating knowledge about the long term evolution of the disturbances affecting the system dynamics (e.g. ambient temperature and solar radiation). In this context, the seasonal storage capabilities of the systemare difficult to be optimally managed. This paper addresses this issue by exploiting available historical data to (i) construct bounds that confine with high probability the optimal charging trajectory of the seasonal storage, and (ii) generate a piece-wiseaffine approximation of the value function of the energy stored in the seasonal storage at each time step. Using these bounds and value functions, we formulate a multistage stochastic optimization problem to minimize the total energy consumption of the system. In a numerical study based on a realistic system configuration, the proposed method is shown to operate the system close to global optimality.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
IEEE
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.subject
Stochastic optimal control
en_US
dc.subject
smart cities/houses
en_US
dc.title
A Data-Driven Stochastic Optimization Approach to the Seasonal Storage Energy Management
en_US
dc.type
Journal Article
dc.rights.license
In Copyright - Non-Commercial Use Permitted
dc.date.published
2017-06-09
ethz.journal.title
IEEE Control Systems Letters
ethz.journal.volume
1
en_US
ethz.journal.issue
2
en_US
ethz.pages.start
394
en_US
ethz.pages.end
399
en_US
ethz.size
6 p. accepted version
en_US
ethz.version.deposit
acceptedVersion
en_US
ethz.publication.place
New York, NY
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02650 - Institut für Automatik / Automatic Control Laboratory::03751 - Lygeros, John / Lygeros, John
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02650 - Institut für Automatik / Automatic Control Laboratory::08814 - Smith, Roy (Tit.-Prof.)
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02650 - Institut für Automatik / Automatic Control Laboratory::03751 - Lygeros, John / Lygeros, John
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02650 - Institut für Automatik / Automatic Control Laboratory::08814 - Smith, Roy (Tit.-Prof.)
en_US
ethz.date.deposited
2018-01-22T08:48:36Z
ethz.source
BATCH
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2018-01-24T16:33:38Z
ethz.rosetta.lastUpdated
2024-02-02T13:24:10Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=A%20Data-Driven%20Stochastic%20Optimization%20Approach%20to%20the%20Seasonal%20Storage%20Energy%20Management&rft.jtitle=IEEE%20Control%20Systems%20Letters&rft.date=2017-10&rft.volume=1&rft.issue=2&rft.spage=394&rft.epage=399&rft.issn=2475-1456&rft.au=Darivianakis,%20Georgios&Eichler,%20Annika&Smith,%20Roy&Lygeros,%20John&rft.genre=article&rft_id=info:doi/10.1109/LCSYS.2017.2714426&
Dateien zu diesem Eintrag
Publikationstyp
-
Journal Article [131819]